In the present paper, the ionic conductivity and the dielectric relaxation properties on the poly(vinyl alcohol)-CF 3 COONH 4 polymer system have been investigated by means of impedance spectroscopy measurements over wide ranges of frequencies and temperatures. The electrolyte samples were prepared by solution casting technique. The temperature dependence of the sample's conductivity was modeled by Arrhenius and Vogel-Tammann-Fulcher (VTF) equations. The highest conductivity of the electrolyte of 3.41×10 −3 ( cm) −1 was obtained at 423 K. For these polymer system two relaxation processes are revealed in the frequency range and temperature interval of the measurements. One is the glass transition relaxation (α-relaxation) of the amorphous region at about 353 K and the other is the relaxation associated with the crystalline region at about 423 K. Dielectric relaxation has been studied using the complex electric modulus formalism. It has been observed that the conductivity relaxation in this polymer system is highly nonexponential. From the electric modulus formalism, it is concluded that the electrical relaxation mechanism is independent of temperature for the two relaxation processes, but is dependent on composition.
We report on electrical relaxation measurements of (1 − x)NH 4 H 2 PO 4 -xTiO 2 (x = 0.1) composites by admittance spectroscopy, in the 40-Hz-5-MHz frequency range and at temperatures between 303 and 563 K. Simultaneous thermal and electrical measurements on the composites identify a stable crystalline phase between 373 and 463 K. The real part of the conductivity, σ ', shows a power-law frequency dependence below 523 K, which is well described by Jonscher's expression σ = σ 0 (1 + (ω/ω p ) n ), where σ 0 is the dc conductivity, ω p /2π = f p is a characteristic relaxation frequency, and n is a fractional exponent between 0 and 1. Both σ 0 and f p are thermally activated with nearly the same activation energy in the II region, indicating that the dispersive conductivity originates from the migration of protons. However, activation energies decrease from 0.55 to 0.35 eV and n increases toward 1.0, as the concentration of TiO 2 nanoparticles increases, thus, enhancing cooperative correlation among moving ions. The highest dc conductivity is obtained for the composite x = 0.05 concentration, with values above room temperature about three orders of magnitude higher than that of crystalline NH 4 H 2 PO 4 (ADP), reaching values on the order of 0.1 ( cm) −1 above 543 K.
We report here on the development of composite thick films exhibiting hybrid superconducting and ferromagnetic properties, produced through a low-cost, fast, and versatile process. These films were made of high Tc cuprate superconductor Bi2Sr2(Ca,Y)2Cu3O10 (with Y:Ca ratio of 5%) and ferromagnetic perovskite La2/3Ba1/3MnO3, synthesized by melting-quenching annealing process on a MgO substrate. Curie temperature for La2/3Ba1/3MnO3 was determined (~336 K ) by magnetic field assisted thermogravimetric analysis (TGA), while superconducting behavior of Bi2Sr2(Ca,Y)2Cu3O10/MgO films was observed through temperature-dependent resistance measurements. Superconducting features in our hybrid compound were corroborated by temperature-dependent resistivity and magnetic susceptibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.