BackgroundThe detection of T-wave end points on electrocardiogram (ECG) is a basic procedure for ECG processing and analysis. Several methods have been proposed and tested, featuring high accuracy and percentages of correct detection. Nevertheless, their performance in noisy conditions remains an open problem.MethodsA new approach and algorithm for T-wave end location based on the computation of Trapezium's areas is proposed and validated (in terms of accuracy and repeatability), using signals from the Physionet QT Database. The performance of the proposed algorithm in noisy conditions has been tested and compared with one of the most used approaches for estimating the T-wave end point: the method based on the threshold on the first derivative.ResultsThe results indicated that the proposed approach based on Trapezium's areas outperformed the baseline method with respect to accuracy and repeatability. Also, the proposed method is more robust to wideband noise.ConclusionsThe trapezium-based approach has a good performance in noisy conditions and does not rely on any empirical threshold. It is very adequate for use in scenarios where the levels of broadband noise are significant.
Generation of electric energy through wind turbines is one of the practically inexhaustible alternatives of generation. It is considered a source of clean energy, but still needs a lot of research for the development of science and technologies that ensures uniformity in generation, providing a greater participation of this source in the energy matrix, since the wind presents abrupt variations in speed, density and other important variables. In wind-based electrical systems, it is essential to predict at least one day in advance the future values of wind behavior, in order to evaluate the availability of energy for the next period, which is relevant information in the dispatch of the generating units and in the control of the electrical system. This paper develops ultra-short, short, medium and long-term prediction models of wind speed, based on computational intelligence techniques, using artificial neural network models, Autoregressive Integrated Moving Average (ARIMA) and hybrid models including forecasting using wavelets. For the application of the methodology, the meteorological variables of the database of the national organization system of environmental data (SONDA), Petrolina station, from 1 January 2004 to 31 March 2017, were used. A comparison among results by different used approaches is also done and it is also predicted the possibility of power and energy generation using a certain kind of wind generator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.