Predicting rice (Oryza sativa) productivity under future climates is important for global food security. Ecophysiological crop models in combination with climate model outputs are commonly used in yield prediction, but uncertainties associated with crop models remain largely unquantified. We evaluated 13 rice models against multi-year experimental yield data at four sites with diverse climatic conditions in Asia and examined whether different modeling approaches on major physiological processes attribute to the uncertainties of prediction to field measured yields and to the uncertainties of sensitivity to changes in temperature and CO 2 concentration [CO 2 ]. We also examined whether a use of an ensemble of crop models can reduce the uncertainties. Individual models did not consistently reproduce both experimental and regional yields well, and uncertainty was larger at the warmest and coolest sites. The variation in yield projections was larger among crop models than variation resulting from 16 global climate model-based scenarios. However, the mean of predictions of all crop models reproduced experimental data, with an uncertainty of less than 10% of measured yields. Using an ensemble of eight models calibrated only for phenology or five models calibrated in detail resulted in the uncertainty equivalent to that of the measured yield in well-controlled agronomic field experiments. Sensitivity analysis indicates the necessity to improve the accuracy in predicting both biomass and harvest index in response to increasing [CO 2 ] and temperature.
Explainability in Artificial Intelligence (AI) has been revived as a topic of active research by the need of conveying safety and trust to users in the “how” and “why” of automated decision‐making in different applications such as autonomous driving, medical diagnosis, or banking and finance. While explainability in AI has recently received significant attention, the origins of this line of work go back several decades to when AI systems were mainly developed as (knowledge‐based) expert systems. Since then, the definition, understanding, and implementation of explainability have been picked up in several lines of research work, namely, expert systems, machine learning, recommender systems, and in approaches to neural‐symbolic learning and reasoning, mostly happening during different periods of AI history. In this article, we present a historical perspective of Explainable Artificial Intelligence. We discuss how explainability was mainly conceived in the past, how it is understood in the present and, how it might be understood in the future. We conclude the article by proposing criteria for explanations that we believe will play a crucial role in the development of human‐understandable explainable systems.
This article is categorized under:
Fundamental Concepts of Data and Knowledge > Explainable AI
Technologies > Artificial Intelligence
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.