A new parameter set (referred to as 45A4) is developed for the explicit-solvent simulation of hexopyranose-based carbohydrates. This set is compatible with the most recent version of the GROMOS force field for proteins, nucleic acids, and lipids, and the SPC water model. The parametrization procedure relies on: (1) reassigning the atomic partial charges based on a fit to the quantum-mechanical electrostatic potential around a trisaccharide; (2) refining the torsional potential parameters associated with the rotations of the hydroxymethyl, hydroxyl, and anomeric alkoxy groups by fitting to corresponding quantum-mechanical profiles for hexopyranosides; (3) adapting the torsional potential parameters determining the ring conformation so as to stabilize the (experimentally predominant) (4)C(1) chair conformation. The other (van der Waals and nontorsional covalent) parameters and the rules for third and excluded neighbors are taken directly from the most recent version of the GROMOS force field (except for one additional exclusion). The new set is general enough to define parameters for any (unbranched) hexopyranose-based mono-, di-, oligo- or polysaccharide. In the present article, this force field is validated for a limited set of monosaccharides (alpha- and beta-D-glucose, alpha- and beta-D-galactose) and disaccharides (trehalose, maltose, and cellobiose) in solution, by comparing the results of simulations to available experimental data. More extensive validation will be the scope of a forthcoming article. (c) 2005 Wiley Periodicals, Inc. J Comput Chem 26: 1400-1412, 2005.
We present the first receptor-based pharmacophore model for HIV-1 integrase. The development of "dynamic" pharmacophore models is a new method that accounts for the inherent flexibility of the active site and aims to reduce the entropic penalties associated with binding a ligand. Furthermore, this new drug discovery method overcomes the limitation of an incomplete crystal structure of the target protein. A molecular dynamics (MD) simulation describes the flexibility of the uncomplexed protein. Many conformational models of the protein are saved from the MD simulations and used in a series of multi-unit search for interacting conformers (MUSIC) simulations. MUSIC is a multiple-copy minimization method, available in the BOSS program; it is used to determine binding regions for probe molecules containing functional groups that complement the active site. All protein conformations from the MD are overlaid, and conserved binding regions for the probe molecules are identified. Those conserved binding regions define the dynamic pharmacophore model. Here, the dynamic model is compared to known inhibitors of the integrase as well as a three-point, ligand-based pharmacophore model from the literature. Also, a "static" pharmacophore model was determined in the standard fashion, using a single crystal structure. Inhibitors thought to bind in the active site of HIV-1 integrase fit the dynamic model but not the static model. Finally, we have identified a set of compounds from the Available Chemicals Directory that fit the dynamic pharmacophore model, and experimental testing of the compounds has confirmed several new inhibitors.
A variety of sugars are known to enhance the stability of biomaterials. Trehalose, a nonreducing disaccharide composed of two alpha, alpha(1 --> 1)-linked D-glucopyranose units, appears to be one of the most effective protectants. Both in vivo and in vitro, trehalose protects biostructures such as proteins and membranes from damage due to dehydration, heat, or cold. However, despite the significant amount of experimental data on this disaccharide, no clear picture of the molecular mechanism responsible for its stabilizing properties has emerged yet. Three major hypotheses (water-trehalose hydrogen-bond replacement, coating by a trapped water layer, and mechanical inhibition of the conformational fluctuations) have been proposed to explain the stabilizing effect of trehalose on proteins. To investigate the nature of protein-trehalose-water interactions in solution at the molecular level, two molecular dynamics simulations of the protein lysozyme in solution at room temperature have been carried out, one in the presence (about 0.5 M) and one in the absence of trehalose. The results show that the trehalose molecules cluster and move toward the protein, but neither completely expel water from the protein surface nor form hydrogen bonds with the protein. Furthermore, the coating by trehalose does not significantly reduce the conformational fluctuations of the protein compared to the trehalose-free system. Based on these observations, a model is proposed for the interaction of trehalose molecules with a protein in moderately concentrated solutions, at room temperature and on the nanosecond timescale.
Within density functional theory, a variational particle number approach for rational compound design (RCD) is presented. An expression for RCD is obtained in terms of minimization of a suitably defined energy penalty functional whose gradients are the nuclear and the electronic chemical potential. Using combined quantum and molecular mechanics, a nonpeptidic anticancer drug candidate is designed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.