A brain microstate is defined as a functional/physiological state of the brain during which specific neural computations are performed. It is characterized uniquely by a fixed spatial distribution of active neuronal generators with time varying intensity. Brain electrical activity is modeled as being composed of a time sequence of nonoverlapping microstates with variable duration. A precise mathematical formulation of the model for evoked potential recordings is presented, where the microstates are represented as normalized vectors constituted by scalp electric potentials due to the underlying generators. An algorithm is developed for estimating the microstates, based on a modified version of the classical k-means clustering method, in which cluster orientations are estimated. Consequently, each instantaneous multichannel evoked potential measurement is classified as belonging to some microstate, thus producing a natural segmentation of brain activity. Use is made of statistical image segmentation techniques for obtaining smooth continuous segments. Time varying intensities are estimated by projecting the measurements onto their corresponding microstates. A goodness of fit statistic for the model is presented. Finally, a method is introduced for estimating the number of microstates, based on nonparametric data-driven statistical resampling techniques.
Scalp electric potentials (electroencephalogram; EEG) are contingent to the impressed current density unleashed by cortical pyramidal neurons undergoing post-synaptic processes. EEG neuroimaging consists of estimating the cortical current density from scalp recordings. We report a solution to this inverse problem that attains exact localization: exact low-resolution brain electromagnetic tomography (eLORETA). This non-invasive method yields high time-resolution intracranial signals that can be used for assessing functional dynamic connectivity in the brain, quantified by coherence and phase synchronization. However, these measures are non-physiologically high because of volume conduction and low spatial resolution. We present a new method to solve this problem by decomposing them into instantaneous and lagged components, with the lagged part having almost pure physiological origin.
These results, based on electrophysiological imaging, not only support hemodynamic findings implicating activation of the anterior cingulate as a predictor of response in depression, but they also suggest that differential activity in the rostral anterior cingulate is associated with gradations of response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.