ABSTRACT. A large part of the numerical procedures for obtaining the equilibrium path or loaddisplacement curve of structural problems with nonlinear behavior is based on the Newton-Raphson iterative scheme, to which is coupled the path-following methods. This paper presents new algorithms based on Potra-Pták, Chebyshev and super-Halley methods combined with the Linear Arc-Length path-following method. The main motivation for using these methods is the cubic order convergence. To elucidate the potential of our approach, we present an analysis of space and plane trusses problems with geometric nonlinearity found in the literature. In this direction, we will make use of the Positional Finite Element Method, which considers the nodal coordinates as variables of the nonlinear system instead of displacements. The numerical results of the simulations show the capacity of the computational algorithm developed to obtain the equilibrium path with force and displacement limits points. The implemented iterative methods exhibit better efficiency as the number of time steps and necessary accumulated iterations until convergence and processing time, in comparison with classic methods of Newton-Raphson and Modified Newton-Raphson.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.