In the paper, we introduce a multi-objective scenario-based optimization approach for chance-constrained portfolio selection problems. More specifically, a modified version of the normal constraint method is implemented with a global solver in order to generate a dotted approximation of the Pareto frontier for bi-and tri-objective programming problems. Numerical experiments are carried out on a set of portfolios to be optimized for an EU-based non-life insurance company. Both performance indicators and risk measures are managed as objectives. Results show that this procedure is effective and readily applicable to achieve suitable risk-reward tradeoff analysis.
A novel interval optimisation approach is developed to include imprecise forecasts into the portfolio selection process for investors measuring upside potential and downside risk as deviations from a target return. Crisp scenarios are substituted by interval scenarios and the resulting interval optimisation problem is solved in a tractable manner by means of a bi-objective formulation exploiting a partial order relation between intervals. Four utility case studies involving assets from the F.T.S.E. M.I.B. Index are considered to illustrate how impreciseness can be efficiently handled in portfolio management
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.