Transdermal drug delivery offers an attractive alternative to the conventional drug-delivery methods of oral administration and injection. Apart from the convenience and noninvasiveness, the skin also provides a "reservoir" that sustains delivery over a period of days. It offers multiple sites to avoid local irritation and toxicity, yet it can also offer the option of concentrating drugs at local areas to avoid undesirable systemic effects. However, at present, the clinical use of transdermal delivery is limited by the fact that very few drugs can be delivered transdermally at a viable rate. This difficulty is because the stratum corneum of skin acts as an efficient barrier that limits penetration of drugs through the skin, and few noninvasive methods are known to significantly enhance the penetration of this barrier. In order to increase the range of drugs available for transdermal delivery, the use of nanocarriers has emerged as an interesting and valuable alternative for delivering lipophilic and hydrophilic drugs throughout the stratum corneum with the possibility of having a local or systemic effect for the treatment of many different diseases. These nanocarriers (nanoparticles, ethosomes, dendrimers, liposomes, etc) can be made of a lot of different materials, and they are very different in structure and chemical nature. They are too small to be detected by the immune system, and furthermore they can deliver the drug in the target organ using lower drug doses in order to reduce side effects.
Aflatoxins, a group of extremely toxic mycotoxins produced by Aspergillus flavus, A. parasiticus and A. nomius, can occur as natural contaminants of certain agricultural commodities, particularly maize. These toxins have been shown to be hepatotoxic, carcinogenic, mutagenic and cause severe human and animal diseases. The effectiveness of neutral electrolyzed oxidizing water (NEW) on aflatoxin detoxification was investigated in HepG2 cells using several validation methodologies such as the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, the induction of lipid peroxidation, the oxidative damage by means of glutathione modulation, the Ames test and the alkaline Comet assay. Our results showed that, after the aflatoxin-contaminated maize containing 360 ng/g was soaked in NEW (60 mg/L available chlorine, pH 7.01) during 15 min at room temperature, the aflatoxin content did not decrease as confirmed by the immunoaffinity column and ultra performance liquid chromatography methods. Aflatoxin fluorescence strength of detoxified samples was similar to untreated samples. However, aflatoxin-associated cytotoxicity and genotoxicity effects were markedly reduced upon treatment. According to these results, NEW can be effectively used to detoxify aflatoxin-contaminated maize.
were synthesized to act as potential skin drug carriers. A novel multiscale non-linear model, based on an oscillatory mechanism, which includes polymerization, de-polymerization, re-polymerization and cluster dynamics, is shown to fit the kinetics experimental data and it is used to estimate the amount of potentially histotoxic by-products (i.e. residual monomers or very low molecular weight oligomers).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.