Biotherapeutic glycoproteins have revolutionised the field of pharmaceuticals, with new discoveries and continuous improvements underpinning the rapid growth of this industry. N-glycosylation is a critical quality attribute of biotherapeutic glycoproteins that influences the efficacy, half-life and immunogenicity of these drugs. This review will focus on the advances and future directions of remodelling N-glycosylation in Chinese hamster ovary (CHO) cells, which are the workhorse of recombinant biotherapeutic production, with particular emphasis on antibody products, using strategies such as cell line and protein backbone engineering.
Glycosylation is a critical post-translational modification of proteins, improving properties such as folding, half-life and functionality. However, glycosylation is a non-templated and heterogeneous process because of the promiscuity of the enzymes involved. Here we describe a platform for sequential glycosylation reactions for tailored sugar structures (SUGAR-TARGET) that allows bespoke, controlled N-linked glycosylation in vitro. This novel proof-of-concept system is enabled by immobilised enzymes produced with a "one-step immobilisation/purification" method to express, biotinylate in vivo and immobilise glycosyltransferases. The immobilised enzymes are used in a reaction cascade mimicking a human-like N-linked glycosylation pathway where promiscuity naturally exists. The enzyme cascade is applied to free glycans, and a monomeric Fc domain expressed in glycoengineered Pichia pastoris, yielding near homogeneous glycoforms (>95% conversion). Finally, immobilised β-1,4 galactosyltransferase is used to enhance the galactosylation profile of three different IgGs yielding 80.2 - 96.3 % terminal galactosylation. Enzyme recycling was further demonstrated for 7 cycles, with a combined reaction time greater than 140 hours. The novel SUGAR-TARGET platform is easy to implement, modular and reusable, and therefore can lead to the development of homogeneous glycan structures for functional and clinical evaluation. The use of immobilised enzymes enables the economical modification of cell-based material supporting applications at a large industrial scale.
Recombinant monoclonal antibodies bind specific molecular targets and, subsequently, induce an immune response or inhibit the binding of other ligands.However, monoclonal antibody functionality and half-life may be reduced by the type and distribution of host-specific glycosylation. Attempts to produce superior antibodies have inspired the development of genetically modified producer cells that synthesize glyco-optimized antibodies. Glycoengineering typically requires the generation of a stable knockout or knockin cell line using methods such as clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9.Monoclonal antibodies produced by engineered cells are then characterized using mass spectrometric methods to determine if the desired glycoprofile has been obtained. This strategy is time-consuming, technically challenging, and requires specialists. Therefore, an alternative strategy that utilizes streamlined protocols for genetic glycoengineering and glycan detection may assist endeavors toward optimal antibodies. In this proof-of-concept study, an IgG-producing Chinese hamster ovary cell served as an ideal host to optimize glycoengineering. Short interfering RNA targeting the Fut8 gene was delivered to Chinese hamster ovary cells, and the resulting changes in FUT8 protein expression were quantified. The results indicate that knockdown by this method was efficient, leading to a ~60% reduction in FUT8. Complementary analysis of the antibody glycoprofile was performed using a rapid yet highly sensitive technique: capillary gel electrophoresis and laserinduced fluorescence detection. All knockdown experiments showed an increase in afucosylated glycans; however, the greatest shift achieved in this study was ~20%. This protocol simplifies glycoengineering efforts by harnessing in silico design tools, commercially synthesized gene targeting reagents, and rapid quantification assays
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.