The structure transformation of Mg-CUK-1 due to the confinement of H2O molecules was investigated. Powder X-ray diffraction (PXRD) patterns were collected at different H2O loadings and the cell parameters of the H2O-loaded Mg-CUK-1 material were determined by the Le Bail strategy refinements. A bottleneck effect was observed when one hydrogen-bonded H2O molecule per unit cell (18% relative humidity (RH)) was confined within Mg-CUK-1, confirming the increase in the CO2 capture for Mg-CUK-1.
The synthesis and characterization of one symmetrical bis-1-substituted-1H-tetrazole (69%) via a Huisgen-type 1,3-dipolar cycloaddition, as well as, one symmetrical aza-linked bis-5-substituted-1H-tetrazole (57%) via a classic Huisgen 1,3-dipolar cycloaddition followed by a reductive aza-coupling under greener reaction conditions are described. The main reason behind these tetrazole-based ligands is to construct novel Metal-Organic Framework (MOF) architectures to evaluate their CO2 capture properties under relative humidity conditions. It is worthy to note that both herein reported products have not been synthesized nor isolated, anywhere. Besides, the synthesis of new ligands to fabricate novel MOFs with potential application in environmental remediation has become a highly valued field of opportunity for synthetic chemists and materials engineers.
The new bis-heterocyclic compound ferrocenyl-bis-(1-(4-benzyl-5-morpholinooxazol-2-yl)-N-(4-(trifluoromethyl)benzyl)methanamine) (1) was synthesized in 73% overall yield in 1.5 hours via a pseudo-repetitive Ugi-Zhu five-component reaction, starting from 1,1′-ferrocenedicarboxaldehyde, 4-(trifluoromethyl)benzylamine, and 2-isocyano-1-morpholino-3-phenylpropan-1-one, in 1:2.1:2.2 proportions, respectively, using scandium(III) triflate as a Lewis-acid catalyst, microwaves as a heat source, and toluene as a solvent. The synthesized compound was characterized by 1D (1H, 13C, and 19F) and 2D (COSY, HSQC, and HMBC) NMR, HRMS, and FT-IR.
The synthesis and characterization of three new bis 1-substituted 1H-tetrazoles are described. Two products were synthesized in a single step via a direct heterocyclization of primary amines, methyl orthoester (trymethyl orthoformate), and sodium azide in 30% and 91% yields, respectively. Besides, another one was prepared via a three-step synthetic strategy: SNAr (32%), nitro-group reduction (66%), and primary amine heterocyclization (83%), yielding 18%, overall. The aim behind the synthesis of new tetrazole-containing products is to construct novel MOF-like structures to evaluate their gas capture properties (CO2, CO, and SO2) under relative humidity conditions.
A diversity-oriented synthesis (DOS) of two new polyheterocyclic compounds was performed via an Ugi-Zhu/cascade (N-acylation/aza Diels-Alder cycloaddition/decarboxylation/dehydration)/click strategy, both step-by-step to optimize all involved experimental stages, and in one pot manner to evaluate the scope and sustainability of this polyheterocyclic-focused synthetic strategy. In both ways, the yields were excellent, considering the high number of bonds formed with release of only one carbon dioxide and two molecules of water. The Ugi-Zhu reaction was carried out using the 4-formylbenzonitrile as orthogonal reagent, where the formyl group was first transformed into the pyrrolo[3,4-b]pyridin-5-one core, and then the remaining nitrile group was further converted into two different nitrogen-containing polyheterocycles, both via click-type cycloadditions. The first one used sodium azide to obtain the corresponding 5-substituted-1H-tetrazolyl-pyrrolo[3,4-b]pyridin-5-one, and the second one with dicyandiamide to synthesize the 2,4-diamino-1,3,5-triazine-pyrrolo[3,4-b]pyridin-5-one. Both synthesized compounds may be used for further in vitro and in silico studies because they contain more than two heterocyclic moieties of high interest in medicinal chemistry, as well as in optics due to their high π-conjugation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.