The article proposes a model of a salient pole synchronous machine field winding based on a single transmission line model. An experimental method to derive the parameters is also presented and validated. Finally, the measured voltage distribution in the winding is compared to the model voltage distribution and the results match, demonstrating the model capabilities. The model describes the intrinsic resonance phenomena and accurately determines the voltage amplification factor.
This work investigates the establishment of steady-state eddy currents in solid and laminated salient poles and rotor rim of synchronous machines due to a periodic excitation voltage. It shows that the presence of eddy currents in the rotor magnetic circuit has the double effect of increasing the excitation winding AC-resistance and decreasing its magnetizing AC-inductance. According to that a simple analytical model is presented in here which allows a rapid rough estimation of the excitation winding AC-resistance when little information is available about the machine geometry and its electric/magnetic materials properties. The model is then verified by reproducing in frequency the excitation winding AC-resistance and the related power loss measured in two synchronous generators. Finally, the limits of reliability and applicability of the model are discussed. The model has implications for periodic field winding current control and voltage regulation in synchronous machines.
This paper describes a thermal and electrical model, used at Robert Bosch GmbH for the design of an innovative motor for a water-pump. In addition, it offers an example of a highly integrated mechatronic system. A bonded-ferrite inner rotor has been developed with an integrated front centrifugal impeller which is driven by the magnetic interaction of a rotating field created by claw-poles. The two phase unipolar coil arrangement is fed by an internal circuit using two MOSFETS controlled by the commutation signal from a bipolar Hall-IC. This is the first mass-production example of an electrical machine for an automotive application where the claw pole topology is used to realise the armature of the motor (i.e. the rotating field) and not the excitation field.
The purpose of this paper is to carry out an alternative to the present transient models for field wound synchronous machines, which is able to take into account the nonlinearity of the magnetic materials as well as the cross-magnetization. After presenting the principal model structures according to the state variables, a model based on two lookup tables for the magnetizing flux linkages is introduced and built step by step. The resulting signal flowchart shows an algebraic loop within the model, where the main flux linkage rapidly converges to its instantaneous value by simple iteration. The proof of this convergence is given for both saturated and unsaturated machine. Even though the proposed model uses the total linkage flux as state variable, as many alternative models do, it does not require the inversion of the current to flux linkage function (i.e., of lookup tables). This can spare a heavy computational task, especially with very large lookup tables. In the proposed model, the computational effort in the worst case scenario is reduced to few iterations (<10). Finally, the nonlinear behavior of the model is verified in four different transient scenarios by comparing its outcomes with those of a linear model for the same test machine.
Herein, a set of experimental procedures is presented for determining the main electrical distributed parameters of the field winding in salient pole synchronous machines. It applies to the electrical characterisation of iron‐core power inductors and transformer windings as well, in a range of frequency useful for power electronics applications. A first estimation of the parameters is obtained by forcing the winding into resonance with capacitors of known capacitance. The obtained estimates are then refined through an iterative process, which makes use of the winding natural frequencies. The presented procedures are applied step‐by‐step to the field winding of a 60‐kVA salient pole synchronous generator with solid poles. The distributed parameters model, featured using the outlined procedures, accurately reproduces the winding voltage distribution in a large range of frequency. Finally, it is explored how the interaction between armature and rotor influences the field winding parameters, pointing to the differences of measuring them with the rotor inside or outside the machine bore.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.