In this thesis we study two problems dealing with digraphs: a packing problem and a counting problem. We study the problem of packing the maximum number of arborescences in the random digraph D(n, p), where each possible arc is included uniformly at random with probability p = p(n). Let λ(D(n, p)) denote the largest integer λ ≥ 0 such that, for all 0 ≤ ≤ λ, we have −1 i=0 (− i)|{v : d in (v) = i}| ≤. We show that the maximum number of arc-disjoint arborescences in D(n, p) is λ(D(n, p)) asymptotically almost surely. We also give tight estimates for λ(D(n, p)) for every p ∈ [0, 1]. The main tools that we used were expansion properties of random digraphs, the behavior of in-degree of random digraphs and a classic result by Frank relating subpartitions and number of arborescences. For the counting problem, we study the density of fixed strongly connected subtournaments on 5 vertices in large tournaments. We determine the maximum density asymptotically for five tournaments as well as unique extremal sequences for each tournament. As a byproduct of this study we also characterize tournaments that are recursive blow-ups of a 3-cycle as tournaments that avoid three specific tournaments of size 5. We use the theory of flag algebras as a main tool for this problem and combinatorial settings obtained from semidefinite method.
, por sempre me apoiarem pensando no meu melhor. Ao meu orientador Yoshiharu Kohayakawa pela paciência, dedicação, atenção, disponibilidade e exemplo de pesquisador a ser seguido por qualquer estudante que pense em seguir carreia acadêmica. Provavelmente nenhum outro teria sido tão bom orientador para mim. Ao meu amigo Guilherme Mota (Guilérme), pois além da verdadeiríssima amizade também foi praticamente um co-orientador, sempre se disponibilizando para estudar junto, aprender junto, virar noites no laboratório. Sem sua ajuda a conclusão do mestrado seria muito mais complicada. Ao Rafael Barbosa (Ranha) que, assim como Guilherme, faz parte do trio cearense. Acima de tudo pela amizade sincera, pelas viradas de noite juntas no laboratório, saídas conjuntas, brigas dos três e sempre um apoiando ao outro. Com certeza foi muito mais fácil a mudança para São Paulo estando ao lado destes. Às minhas amigas Natália Albuquerque (Peitão), Ana Haipek (Aninha) e Patrícia Factore (Tica), que sempre se dispuseram a estar ao meu lado para dar excelentes conselhos, jogar conversas foras e, principalmente, pela verdadeira amizade e carinho. Ademais, gostaria de ressaltar que com a chegada da Natália Peito se consagrou o quarteto nordestino (Eu, Ranha, Guilérme e Naty Peito). À projete liberdade capoeira, representada pelo Mestre Gladson, que por muitas vezes serviu com válvula de escape para as diculdades do dia a dia e para subjetivar a vida. Por m, agradeço às diversas pessoas que conheci e suas contribuições, sejam na formação acadêmica ou na formação sócio-cultural, e a quem mais achar que deva estar aqui :-). i Palavras-chave: Grafos aleatórios, Lema da regularidade esparso, Orientações proibidas iii The number of orientations with no directed cycle of a given length Abstract Let H be an orientation of a graph H. Alon and Yuster [The number of orientations having no xed tournament, Combinatorica, 26 (2006), no. 1, 116] proposed the problem of determining or estimating D(n, m, H), the maximum number of H-free orientations a graph with n vertices and m edges may have. If we replace the maximum by`essential maximum', that is, if we are allowed to consider the maximum over the majority of n-vertex graphs with m edges, as opposed to all of them, the problem becomes more accessible. We show that this essential maximum is 2 o(m) if H is the directed cycle C of length (≥ 3), as long as m n 1+1/(−1). On the other hand, the corresponding essential minimum is 2 (1−o(1))m if m n 1+1/(−1). The proof method yields results of the same nature for oriented bipartite graphs H that contain a directed cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.