Local congruences are equivalence relations whose equivalence classes are convex sublattices of the original lattice. In this paper, we present a study that relates local congruences to attribute reduction in FCA. Specifically, we will analyze the impact in the context of the use of local congruences, when they are used for complementing an attribute reduction.
The detection of redundant or irrelevant variables (attributes) in datasets becomes essential in different frameworks, such as in Formal Concept Analysis (FCA). However, removing such variables can have some impact on the concept lattice, which is closely related to the algebraic structure of the obtained quotient set and their classes. This paper studies the algebraic structure of the induced equivalence classes and characterizes those classes that are convex sublattices of the original concept lattice. Particular attention is given to the reductions removing FCA’s unnecessary attributes. The obtained results will be useful to other complementary reduction techniques, such as the recently introduced procedure based on local congruences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.