The aim of this work is to propose bio-inspired neural networks for decision-making mechanisms and modulation of motor control of an automaton. In this work, we have adapted and applied cortical synaptic circuits, such as short-term memory circuits, winner-take-all (WTA) class competitive neural networks, modulation neural networks, and nonlinear oscillation circuits, in order to make the automaton able to avoid obstacles and explore simulated and real environments. The performance achieved by using biologically inspired neural networks to solve the task at hand is similar to that of several works mentioned in the specialized literature. Furthermore, this work contributed to bridging the fields of computational neuroscience and robotics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.