Bir Rebaa Nord (BRN) and Bir Sif Fatima (BSF) fields, operated by Groupement Sonatrach-Agip (GSA, a JV between ENI and Sonatrach), are located in the Berkine basin in north-eastern Algeria. These fields are characterized by oil-bearing sandstone reservoirs with low to medium petro-physical properties. During the development phase, to counteract the effect of pressure depletion, water and gas injection was implemented for reservoir pressure maintenance. In addition, due to the increasing water cut, artificial lift systems were employed to effectively produce these fields. Hydraulic fracturing has been implemented in GSA since year 2000 to improve well performance, both in terms of productivity and injectivity for oil producers and water injectors respectively. The fracturing process has been improved over the years regarding operational procedures, enhanced reservoir knowledge and implementation of new technologies towards resolving the many uncovered challenges. Changes to the perforation strategy, fracturing fluids formulation, rock mechanics studies and design of proppant schedules are examples of enhancement to the fracturing practice that have been implemented in the recent years. One of the uncharted matters in GSA, coming out from the post-job data re-processing, was the necessity of a precise characterization of the hydraulic fractures vertical coverage. The presence of several sandstone layers with different properties brought questions if the fracture had grown into an unwanted zone or may had not properly covered the entire target formation. Moreover, fracture height is an essential parameter for frac models calibration. Its accurate determination drastically reduces the margin of error in treatment net pressure matching, helping to more precisely established fracture half-length and width, stress profile and, last but not least, achieving a calibrated model for future operations in the same area. This paper describes the successful implementation on two water injector wells of a novel non-radioactive detectable proppant for the first time in Algeria. The taggant material within the proppant has been located by comparing the pulsed neutron capture cased-hole logging passes registered before and after the hydraulic fracturing treatments. The detectable compound does not affect proppant properties and, in addition, its non-radioactive nature reduces the timing for materials delivery and eliminates the HSE risks linked to other tracing methods. The pulsed neutron measurements evaluation provided valuable information regarding fractures confinement, avoidance of contact with undesired layers and possible presence of cement channeling. Furthermore, combined with sonic logs and cores data, it helped refining the geo-mechanical model for future interventions design in the same reservoirs.
Hydraulic fracturing for well performance optimization has been implemented for many years in BRN field in north-eastern part of Algeria, operated by Groupement Sonatrach-Agip (a JV between ENI and Sonatrach). Because of unfavorable petro-physical properties of the reservoir, some challenges have been encountered in avoiding any additional damage to the fracture faces and to facilitate the post-job treating fluids flowback. Effective fracturing treatment designs should consider preventive actions for possible fracture conductivity impairment, such as damage attributed to stress, proppant embedment, and damage caused by fracturing fluid residues. Correct proppant selection can minimize effects from stress and embedment, while a suitable fluid system can minimize conductivity impairment from gelling agent solid residue. Traditional guar-based fluid systems, which are often a preferred choice in the industry for fracturing operations, can have damaging effects on fracture conductivity attributed to inherent insoluble residue that can plug proppant pack pore spaces. Implementing a less damaging fluid system can not only maximize retained conductivity, but furthermore provide longer effective fracture half-lengths which may result in more efficient treatment fluid recovery. Therefore, to overcome such issues, a new fracturing fluid has been developed, leaving little or no residue after breaking. Moreover, this fluid system can be tailored to a wide variety of bottom-hole conditions and has comparable properties to guar-borate fluids with respect to proppant transport capacity and rheological characteristics (e.g. viscosity building and breaking behaviors). This paper presents the first successful implementation of this novel fluid system in the BRN field in Algeria for improving the water injection performance of a well characterized by a tight sandstone reservoir. Field data collected after performing the propped fracturing treatment confirm the effectiveness of the fracturing fluid design. Specifically, the following topics will be extensively described within this paper: Characteristics of the BRN field and history of conventional guar-base fluid systems used previously within this field;Specifics of the near residue free fluid system (cross-linker types, pH requirements, etc.);Design considerations for the implementation in the BRN field of this novel fracturing fluid;Results of post fracturing water injection performances.
Berkine basin is one of the main oil producers in Algeria. The upper, middle, and lower TAG-I are the target oil-bearing sands. In this basin, the ROD field is under pressure maintained mainly through water injection together with, to a lesser extent, gas injectors. The southern part of the field, "ROD Tail" has four water injectors targeting the middle TAG-I. In recent evaluation conducted through pressure measurement and an interference test, reservoir pressure was found to have declined by 35 bar within 2 years. This has prompted questions about reservoir management, mainly about the effectiveness of injector well capacity in maintaining reservoir pressure. Extensive data were gathered through well intervention; cleanout, perforation, and a caliper log. Many failed acid jobs were also noted in the history of these wells. An engineered high-pressure jetting operation via coiled tubing was executed, but injectivity could not be restored. A methodology and workflow were adopted to identify the source of formation damage and scale deposition in the near-well area and around perforations. Solid samples were collected from the well and sent to laboratory to characterize formation damage type. The injection water was also analyzed by performing a standard 12-ion concentration analysis. An aqueous model simulator was used to confirm that the water was supersaturated with CaSO4 and CaSO4.2H2O. Finally, clay acid treatment was found to be effective. The treatment fluid was designed to prevent proppant dissolution and to clean fracture matrix interface. This was the first time this type of operation was executed after many unsuccessful conventional acidizing operations. Excellent results were obtained after the acid stimulation treatment. The injection rate was found to increase significantly from 120 m3/d to 360 m3/d. Water injection pressure was also found to decrease from 243 bar to 220 bar, and the injectivity index increased by three times. Near-wellbore formation damage was removed, and formation permeability recovered. The clay acid treatment was applied to other wells in the field and similar results were obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.