Remote sensing (RS) and proximal soil sensing (PSS) technologies offer an advanced array of methods for obtaining soil property information and determining soil variability for precision agriculture. A large amount of data collected by these sensors may provide essential information for precision or site-specific management in a production field. Data clustering techniques are crucial for data mining, and high-density data analysis is important for field management. A new clustering technique was introduced and compared with existing clustering tools to determine the relatively homogeneous parts of agricultural fields. A DUALEM-21S sensor, along with high-accuracy topography data, was used to characterize soil variability in three agricultural fields situated in Ontario, Canada. Sentinel-2 data assisted in quantifying bare soil and vegetation indices (VIs). The custom Neighborhood Search Analyst (NSA) data clustering tool was implemented using Python scripts. In this algorithm, part of the variance of each data layer is accounted for by subdividing the field into smaller, relatively homogeneous, areas. The algorithm’s attributes were illustrated using field elevation, shallow and deep apparent electrical conductivity (ECa), and several VIs. The unique feature of this proposed protocol was the successful development of user-friendly and open source options for defining the spatial continuity of each group and for use in the zone delineation process.
In recent years, there has been a growing need for accessible High-Throughput Plant Phenotyping (HTPP) platforms that can take measurements of plant traits in open fields. This paper presents a phenotyping system designed to address this issue by combining ultrasonic and multispectral sensing of the crop canopy with other diverse measurements under varying environmental conditions. The system demonstrates a throughput increase by a factor of 50 when compared to a manual setup, allowing for efficient mapping of crop status across a field with crops grown in rows of any spacing. Tests presented in this paper illustrate the type of experimentation that can be performed with the platform, emphasizing the output from each sensor. The system integration, versatility, and ergonomics are the most significant contributions. The presented system can be used for studying plant responses to different treatments and/or stresses under diverse farming practices in virtually any field environment. It was shown that crop height and several vegetation indices, most of them common indicators of plant physiological status, can be easily paired with corresponding environmental conditions to facilitate data analysis at the fine spatial scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.