Lithium salt solutions of Li(CF3SO2)2N, LiTFSI, in a room-temperature ionic liquid (RTIL), 1-butyl-2,3-dimethyl-imidazolium cation, BMMI, and the (CF3SO2)2N(-), bis(trifluoromethanesulfonyl)imide anion, [BMMI][TFSI], were prepared in different concentrations. Thermal properties, density, viscosity, ionic conductivity, and self-diffusion coefficients were determined at different temperatures for pure [BMMI][TFSI] and the lithium solutions. Raman spectroscopy measurements and computer simulations were also carried out in order to understand the microscopic origin of the observed changes in transport coefficients. Slopes of Walden plots for conductivity and fluidity, and the ratio between the actual conductivity and the Nernst-Einstein estimate for conductivity, decrease with increasing LiTFSI content. All of these studies indicated the formation of aggregates of different chemical nature, as it is corroborated by the Raman spectra. In addition, molecular dynamics (MD) simulations showed that the coordination of Li+ by oxygen atoms of TFSI anions changes with Li+ concentration producing a remarkable change of the RTIL structure with a concomitant reduction of diffusion coefficients of all species in the solutions.
The contact between minor amounts of SO2 and crystalline 1-butyl-3-methyl-imidazolium bromide (BMIBr) causes the almost immediate melting of the ionic liquid (mp 45 degrees C) as well as a dramatic decrease in its viscosity in comparison to the pure molten phase. The same behavior was observed for other halide ionic liquids of higher melting points (70, 135, and 220 degrees C). The Raman spectrum of BMIBr-SO2 clearly indicates a specific charge transfer interaction involving SO2 and the halide. The measurements of ionic conductivity and diffusion coefficients obtained for the neat BMIBr (molten phase) and for the BMIBr-SO2 strongly suggest a higher degree of ionic association in the presence of SO2. Molecular dynamic simulations indicate that although the cation-anion distance is preserved in the short range, there is a variation in the interionic distances in the second shell, leading to a less organized structure in the long range. The modulation of the structural and physical properties of ionic liquids by SO2 and the convenient choice of the ions for gas absorption are suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.