eEF2K is a kinase that controls the rate of peptide chain elongation by phosphorylating eukaryotic Elongation Factor 2 (eEF2), the protein that mediates the movement of the ribosome along the mRNA by promoting translocation from the A to the P site. eEF2K-mediated phosphorylation of eEF2 on Thr56 decreases its affinity for the ribosome, thereby inhibiting elongation. Here we show that in response to genotoxic stress, eEF2K is activated by AMPK-mediated phosphorylation on Ser398. Activated eEF2K phosphorylates eEF2 and induces a temporary ribosomal slowdown at the stage of elongation. Subsequently, during checkpoint silencing, eEF2K is degraded by the ubiquitin-proteasome system via the SCFβTrCP ubiquitin ligase to allow rapid resumption of translation elongation. This event requires eEF2K autophosphorylation on a canonical βTrCP-binding domain. The inability to degrade eEF2K during checkpoint silencing caused sustained phosphorylation of eEF2 on Thr56 and delayed resumption of translation elongation. Our study establishes an important link between DNA damage signaling and translation elongation.
Cellular proteins are degraded by the ubiquitin-proteasome system (UPS) in a precise and timely fashion. Such precision is conferred by the high substrate specificity of ubiquitin ligases. Identification of substrates of ubiquitin ligases is crucial not only to unravel the molecular mechanisms by which the UPS controls protein degradation but also for drug discovery purposes because many established UPS substrates are implicated in disease. We developed a combined bioinformatics and affinity purification-mass spectrometry (AP-MS) workflow for the system-wide identification of substrates of SCF(βTrCP), a member of the SCF family of ubiquitin ligases. These ubiquitin ligases are characterized by a multisubunit architecture typically consisting of the invariable subunits Rbx1, Cul1, and Skp1 and one of 69 F-box proteins. The F-box protein of this member of the family is βTrCP. SCF(βTrCP) binds, through the WD40 repeats of βTrCP, to the DpSGXX(X)pS diphosphorylated motif in its substrates. We recovered 27 previously reported SCF(βTrCP) substrates, of which 22 were verified by two independent statistical protocols, thereby confirming the reliability of this approach. In addition to known substrates, we identified 221 proteins that contained the DpSGXX(X)pS motif and also interacted specifically with the WD40 repeats of βTrCP. Thus, with SCF(βTrCP), as the example, we showed that integration of structural information, AP-MS, and degron motif mining constitutes an effective method to screen for substrates of ubiquitin ligases.
Epithelial cell migration is crucial for the development and regeneration of epithelial tissues. Aberrant regulation of epithelial cell migration has a major role in pathological processes such as the development of cancer metastasis and tissue fibrosis. Here, we report that in response to factors that promote cell motility, the Rap guanine exchange factor RAPGEF2 is rapidly phosphorylated by I-kappa-B-kinase-β and casein kinase-1α and consequently degraded by the proteasome via the SCF(βTrCP) ubiquitin ligase. Failure to degrade RAPGEF2 in epithelial cells results in sustained activity of Rap1 and inhibition of cell migration induced by HGF, a potent metastatic factor. Furthermore, expression of a degradation-resistant RAPGEF2 mutant greatly suppresses dissemination and metastasis of human breast cancer cells. These findings reveal a molecular mechanism regulating migration and invasion of epithelial cells and establish a key direct link between IKKβ and cell motility controlled by Rap-integrin signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.