The adherence of Platinum thin film on Si/SiO2 wafer was studies using Chromium, Titanium or Alumina (Cr, Ti, Al2O3) as interlayer. The adhesion of Pt is a fundamental property in different areas, for example in MEMS devices, which operate at high temperature conditions, as well as in biomedical applications, where the problem of adhesion of a Pt film to the substrate is known as a major challenge in several industrial applications health and in biomedical devices, such as for example in the stents.1-4 We investigated the properties of Chromium, Titanium, and Alumina (Cr, Ti, and Al2O3) used as adhesion layers of Platinum (Pt) electrode. Thin films of Chromium, Titanium and Alumina were deposited on Silicon/Silicon dioxide (Si/SiO2) wafer by electron beam. We introduced Al2O3 as a new adhesion layer to test the behavior of the Pt film at higher temperature using a ceramic adhesion thin film. Electric behaviors were measured for different annealing temperatures to know the performance for Cr/Pt, Ti/Pt, and Al2O3/Pt metallic film in the gas sensor application. All these metal layers showed a good adhesion onto Si/SiO2 and also good Au wire bondability at room temperature, but for higher temperature than 400 °C the thin Cr/Pt and Ti/Pt films showed poor adhesion due to the atomic inter-diffusion between Platinum and the metal adhesion layers.5 The proposed Al2O3/Pt ceramic-metal layers confirmed a better adherence for the higher temperatures tested.
The morphology of thin films has been extensively studied in the last years. The properties of a thin film are closely related to its microstructure, especially to its morphology and surface roughness. Optical reflectivity, conductivity, and porosity are characteristics that depend on the film structure. The knowledge of atomistic details of the thin film growth process is useful for the development of new techniques and the control of thin films and new materials. Models of growth process are very powerful tools that can help researchers to predict and control physical, chemical, and mechanical properties. In this work we briefly summarize the theoretical models that have been used in the studies of thin films growth. By describing the deposition process of atoms/molecules on the surface of the substrate, one can study the evolution of the bulk and the surface roughness of a thin film. If an experimental growth process is appropriately described by a theoretical model (or even a combination of one or more different models), it can also provide indications to control the surface roughness and porosity of the film. Controlling the growth process one can obtain materials with a set of desired properties, namely tribological, porosity, and electrical ones. These characteristics are necessary for example, for hosting a solid lubricant on the surface of the material. We believe that the models presented in this work can be very useful in understanding the mechanisms of control and adherence of electrodeposited films which are commonly used in medical applications such as stent devices. We also believe that the models can be helpful to the understanding surface problems related to the superficial defects in stents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.