Pavement management systems require detailed information of the current state of the roads to take appropriate actions to optimize expenditure on maintenance and rehabilitation. In particular, the presence of cracks is a cardinal aspect to be considered. This article presents a solution based on an instrumented vehicle equipped with an imaging system, two Inertial Profilers, a Differential Global Positioning System, and a webcam. Information about the state of the road is acquired at normal road speed. A method based on the use of Gabor filters is used to detect the longitudinal and transverse cracks. The methodologies used to create Gabor filter banks and the use of the filtered images as descriptors for subsequent classifiers are discussed in detail. Three different methodologies for setting the threshold of the classifiers are also evaluated. Finally, an AdaBoost algorithm is used for selecting and combining the classifiers, thus improving the results provided by a single classifier. A large database has been acquired and used to train and test the proposed system and methods, and suitable results have been obtained in comparison with other reference works. C 2013 Computer-Aided Civil and Infrastructure Engineering.
Abstract:The classification of the images taken during the measurement of an architectural asset is an essential task within the digital documentation of cultural heritage. A large number of images are usually handled, so their classification is a tedious task (and therefore prone to errors) and habitually consumes a lot of time. The availability of automatic techniques to facilitate these sorting tasks would improve an important part of the digital documentation process. In addition, a correct classification of the available images allows better management and more efficient searches through specific terms, thus helping in the tasks of studying and interpreting the heritage asset in question. The main objective of this article is the application of techniques based on deep learning for the classification of images of architectural heritage, specifically through the use of convolutional neural networks. For this, the utility of training these networks from scratch or only fine tuning pre-trained networks is evaluated. All this has been applied to classifying elements of interest in images of buildings with architectural heritage value. As no datasets of this type, suitable for network training, have been located, a new dataset has been created and made available to the public. Promising results have been obtained in terms of accuracy and it is considered that the application of these techniques can contribute significantly to the digital documentation of architectural heritage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.