BACKGROUND L-type calcium channel (LTCC) mutations have been associated with Brugada syndrome (BrS), short QT (SQT) syndrome, and Timothy syndrome (LQT8). Little is known about the extent to which LTCC mutations contribute to the J-wave syndromes associated with sudden cardiac death. OBJECTIVE The purpose of this study was to identify mutations in the α1, β2, and α2δ subunits of LTCC (Cav1.2) among 205 probands diagnosed with BrS, idiopathic ventricular fibrillation (IVF), and early repolarization syndrome (ERS). CACNA1C, CACNB2b, and CACNA2D1 genes of 162 probands with BrS and BrS+SQT, 19 with IVF, and 24 with ERS were screened by direct sequencing. METHODS/RESULTS Overall, 23 distinct mutations were identified. A total of 12.3%, 5.2%, and 16% of BrS/BrS+SQT, IVF, and ERS probands displayed mutations in α1, β2, and α2δ subunits of LTCC, respectively. When rare polymorphisms were included, the yield increased to 17.9%, 21%, and 29.1% for BrS/BrS+SQT, IVF, and ERS probands, respectively. Functional expression of two CACNA1C mutations associated with BrS and BrS+SQT led to loss of function in calcium channel current. BrS probands displaying a normal QTc had additional variations known to prolong the QT interval. CONCLUSION The study results indicate that mutations in the LTCCs are detected in a high percentage of probands with J-wave syndromes associated with inherited cardiac arrhythmias, suggesting that genetic screening of Cav genes may be a valuable diagnostic tool in identifying individuals at risk. These results are the first to identify CACNA2D1 as a novel BrS susceptibility gene and CACNA1C, CACNB2, and CACNA2D1 as possible novel ERS susceptibility genes.
Migraine is a recurrent and commonly disabling primary headache disorder that affects over 17% of women and 5%-8% of men. Migraine susceptibility is multifactorial with genetic, hormonal and environmental factors all playing an important role. The physiopathology of migraine is complex and still not fully understood. Many different neuropeptides, neurotransmitters and brain pathways have been implicated. In connection with the myriad mechanisms and pathways implicated in migraine, a variety of multisystemic comorbidities (e.g., cardiovascular, psychiatric and other neurological conditions) have been found to be closely associated with migraine. Recent reports demonstrate an increased frequency of gastrointestinal (GI) disorders in patients with migraine compared with the general population. Helicobacter pylori infection, irritable bowel syndrome, gastroparesis, hepatobiliary disorders, celiac disease and alterations in the microbiota have been linked to the occurrence of migraine. Several mechanisms involving the gut-brain axis, such as a chronic inflammatory response with inflammatory and vasoactive mediators passing to the circulatory system, intestinal microbiota modulation of the enteric immunological milieu and dysfunction of the autonomic and enteric nervous system, have been postulated to explain these associations. However, the precise mechanisms and pathways related to the gut-brain axis in migraine need to be fully elucidated. In this review, we survey the available literature linking migraine with GI disorders. We discuss the possible physiopathological mechanisms, and clinical implications as well as several future areas of interest for research.
Cobalt, as a trace element, is essential for rumen microorganisms for the formation of vitamin B12. In the metabolism of mammals, vitamin B12 is an essential part of two enzymatic systems involved in multiple metabolic reactions, such as in the metabolism of carbohydrates, lipids, some amino acids and DNA. Adenosylcobalamin and methylcobalamin are coenzymes of methylmalonyl coenzyme A (CoA) mutase and methionine synthetase and are essential for obtaining energy through ruminal metabolism. Signs of cobalt deficiency range from hyporexia, reduced growth and weight loss to liver steatosis, anemia, impaired immune function, impaired reproductive function and even death. Cobalt status in ruminant animals can be assessed by direct measurement of blood or tissue concentrations of cobalt or vitamin B12, as well as the level of methylmalonic acid, homocysteine or transcobalamin in blood; methylmalonic acid in urine; some variables hematological; food consumption or growth of animals. In general, it is assumed that the requirement for cobalt (Co) is expressed around 0.11 ppm (mg/kg) in the dry matter (DM) diet; current recommendations seem to advise increasing Co supplementation and placing it around 0.20 mg Co/kg DM. Although there is no unanimous criterion about milk production, fattening or reproductive rates in response to increased supplementation with Co, in some investigations, when the total Co of the diet was approximately 1 to 1.3 ppm (mg/kg), maximum responses were observed in the milk production.
The objective of the study was to evaluate the current standard practice of using volume and total nucleated cell (TNC) count for the selection of cord blood (CB) units for cryopreservation and further transplantation. Data on 794 CB units whose CD34+ cell content was determined by flow cytometry were analyzed by using a receiver operating characteristic (ROC) curve model to validate the performance of volume and TNC count for the selection of CB units with grafting purposes. The TNC count was the best parameter to identify CB units having 2 × 10(6) or more CD34+ cells, with an area under the ROC curve of 0.828 (95% confidence interval, 0.800-0.856; P < .01) and an efficiency of 75.4%. Combination of parameters (TNC/mononuclear cells [MNCs], efficiency 74.7%; TNC/volume, efficiency 68.9%; and volume/MNCs, efficiency 68.3%) did not lead to improvement in CB selection. All CB units having a TNC count of 8 × 10(8) or more had the required CD34+ cell dose for patients weighing 10 kg or less.
BackgroundToluene is one of the most widely abused inhaled drugs due to its acute neurologic effects including euphoria and subsequent depression. However, dangerous metabolic abnormalities are associated to acute toluene intoxication. It has been previously reported that rhabdomyolysis and acute hepatorenal injury could be hallmarks of the condition, and could constitute risk factors for poor outcomes. The objective was to describe the clinical presentation, to characterize the renal and liver abnormalities, the management and prognosis associated to acute toluene intoxication.MethodsWe prospectively assessed 20 patients that were admitted to a single center’s emergency department from September 2012 to June 2014 with clinical and metabolic alterations due to acute toluene intoxication.ResultsThe main clinical presentation consisted of weakness associated to severe hypokalemia and acidosis. Renal glomerular injury (proteinuria) is ubiquitous. Biliary tract injury (alkaline phosphatase and gamma-glutamyl transpeptidase elevations) disproportional to hepatocellular injury is common. Rhabdomyolysis occurred in 80 % of patients, probably due to hypokalemia and hypophosphatemia. There were three deaths, all female, and all associated with altered mental status, severe acidosis, hypokalemia and acute oliguric renal failure. The cause of death was in all cases due to cardiac rhythm abnormalities.ConclusionThe hallmarks of acute toluene intoxication are hypokalemic paralysis and metabolic acidosis. Liver injury and rhabdomyolysis are common. On admission, altered mental status, renal failure, severe acidemia and female gender (not significant in our study, but present in all three deaths) could be associated with a poor outcome, and patients with these characteristics should be considered to be treated in an intensive care unit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.