Urban systems present hierarchical structures at many different scales. These are observed as administrative regional delimitations which are the outcome of complex geographical, political and historical processes which leave almost indelible footprints on infrastructure such as the street network. In this work, we uncover a set of hierarchies in Britain at different scales using percolation theory on the street network and on its intersections which are the primary points of interaction and urban agglomeration. At the larger scales, the observed hierarchical structures can be interpreted as regional fractures of Britain, observed in various forms, from natural boundaries, such as National Parks, to regional divisions based on social class and wealth such as the well-known North–South divide. At smaller scales, cities are generated through recursive percolations on each of the emerging regional clusters. We examine the evolution of the morphology of the system as a whole, by measuring the fractal dimension of the clusters at each distance threshold in the percolation. We observe that this reaches a maximum plateau at a specific distance. The clusters defined at this distance threshold are in excellent correspondence with the boundaries of cities recovered from satellite images, and from previous methods using population density.
Various methods have been developed independently to study the multifractality of measures in many different contexts. Although they all convey the same intuitive idea of giving a "dimension" to sets where a quantity scales similarly within a space, they are not necessarily equivalent on a more rigorous level. This review article aims at unifying the multifractal methodology by presenting the multifractal theoretical framework and principal practical methods, namely the moment method, the histogram method, multifractal detrended fluctuation analysis (MDFA) and modulus maxima wavelet transform (MMWT), with a comparative and interpretative eye
We perform a multifractal analysis of the evolution of London's street network from 1786 to 2010. First, we show that a single fractal dimension, commonly associated with the morphological description of cities, does not suffice to capture the dynamics of the system. Instead, for a proper characterization of such a dynamics, the multifractal spectrum needs to be considered. Our analysis reveals that London evolves from an inhomogeneous fractal structure, that can be described in terms of a multifractal, to a homogeneous one, that converges to monofractality. We argue that London's multifractal to monofracal evolution might be a special outcome of the constraint imposed on its growth by a green belt. Through a series of simulations, we show that multifractal objects, constructed through diffusion limited aggregation, evolve towards monofractality if their growth is constrained by a non-permeable boundary.
The morphology of urban agglomeration is studied here in the context of information exchange between different spatio-temporal scales. Urban migration to and from cities is characterised as non-random and following non-random pathways. Cities are multidimensional non-linear phenomena, so understanding the relationships and connectivity between scales is important in determining how the interplay of local/regional urban policies may affect the distribution of urban settlements. In order to quantify these relationships, we follow an information theoretic approach using the concept of Transfer Entropy. Our analysis is based on a stochastic urban fractal model, which mimics urban growing settlements and migration waves. The results indicate how different policies could affect urban morphology in terms of the information generated across geographical scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.