Word sense disambiguation (WSD) is the ability to identify the meaning of words in context in a computational manner. WSD is considered an AI-complete problem, that is, a task whose solution is at least as hard as the most difficult problems in artificial intelligence. We introduce the reader to the motivations for solving the ambiguity of words and provide a description of the task. We overview supervised, unsupervised, and knowledge-based approaches. The assessment of WSD systems is discussed in the context of the Senseval/Semeval campaigns, aiming at the objective evaluation of systems participating in several different disambiguation tasks. Finally, applications, open problems, and future directions are discussed.
We present an automatic approach to the construction of BabelNet, a very large, wide-coverage multilingual semantic network. Key to our approach is the integration of lexicographic and encyclopedic knowledge from WordNet and Wikipedia. In addition, Machine Translation is applied to enrich the resource with lexical information for all languages. We first conduct in vitro experiments on new and existing gold-standard datasets to show the high quality and coverage of BabelNet. We then show that our lexical resource can be used successfully to perform both monolingual and cross-lingual Word Sense Disambiguation: thanks to its wide lexical coverage and novel semantic relations, we are able to achieve state-of the-art results on three different SemEval evaluation tasks. (C) 2012 Published by Elsevier B.V
Entity Linking (EL) and Word Sense Disambiguation (WSD) both address the lexical ambiguity of language. But while the two tasks are pretty similar, they differ in a fundamental respect: in EL the textual mention can be linked to a named entity which may or may not contain the exact mention, while in WSD there is a perfect match between the word form (better, its lemma) and a suitable word sense. In this paper we present Babelfy, a unified graph-based approach to EL and WSD based on a loose identification of candidate meanings coupled with a densest subgraph heuristic which selects high-coherence semantic interpretations. Our experiments show state-of-the-art performances on both tasks on 6 different datasets, including a multilingual setting. Babelfy is online at http://babelfy.org
Word Sense Disambiguation is a longstanding task in Natural Language Processing, lying at the core of human language understanding. However, the evaluation of automatic systems has been problematic, mainly due to the lack of a reliable evaluation framework. In this paper we develop a unified evaluation framework and analyze the performance of various Word Sense Disambiguation systems in a fair setup. The results show that supervised systems clearly outperform knowledge-based models. Among the supervised systems, a linear classifier trained on conventional local features still proves to be a hard baseline to beat. Nonetheless, recent approaches exploiting neural networks on unlabeled corpora achieve promising results, surpassing this hard baseline in most test sets.
In this article, we provide a comprehensive introduction to knowledge graphs, which have recently garnered significant attention from both industry and academia in scenarios that require exploiting diverse, dynamic, large-scale collections of data. After some opening remarks, we motivate and contrast various graph-based data models, as well as languages used to query and validate knowledge graphs. We explain how knowledge can be represented and extracted using a combination of deductive and inductive techniques. We conclude with high-level future research directions for knowledge graphs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.