This book provides a comprehensive introduction to the theory of the interaction between atoms and electromagnetic fields, an area which is central to the investigation of the fundamental concepts of quantum mechanics. The first four chapters describe the different forms of the interaction between atoms and radiation fields. The rest of the book deals with how these interactions lead to the formation of dressed states, in the presence of vacuum fluctuations, as well as in the presence of external fields. Also covered are the role of dressed atoms in quantum measurement theory, and the physical interpretation of vacuum radiative effects. Treating a key field on the boundary between quantum optics and quantum electrodynamics, the book will be of great use to graduate students, as well as to established experimentalists and theorists, in either of these areas.
We study the resonance interaction between two uniformly accelerated identical atoms, one excited and the other in the ground state, prepared in a correlated (symmetric or antisymmetric) state and interacting with the scalar field or the electromagnetic field in the vacuum state. In this case (resonance interaction), the interatomic interaction is a second-order effect in the atom-field coupling. We separate the contributions of vacuum fluctuations and radiation reaction to the resonance energy shift of the system, and show that only radiation reaction contributes, while Unruh thermal fluctuations do not affect the resonance interaction. We also find that beyond a characteristic length scale related to the atomic acceleration, non-thermal-like effects in the radiation reaction contribution change the distance-dependence of the resonance interaction. Finally, we find that previously unidentified features appear, compared with the scalar field case, when the interaction with the electromagnetic field is considered, as a consequence of the peculiar nature of the vacuum quantum noise of the electromagnetic field in a relativistically accelerated background.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.