We study the loop quantum cosmology of a flat Friedmann-Lemaître-Robertson-Walker spacetime with a Maxwell field. We show that many of the qualitative properties derived for the case of a massless scalar field also hold for a Maxwell field. In particular, the big-bang singularity is replaced by a quantum bounce, and the operator corresponding to the matter energy density is bounded above by the same critical energy density. We also numerically study the evolution of wave functions that are sharply peaked in the low energy regime, and derive effective equations which very closely approximate the full quantum dynamics of sharply peaked states at all times, including the near-bounce epoch. In the process, the analytical and numerical methods originally used to study the dynamics in LQC for the case of a massless scalar field are substantially improved to handle the difficulties (that generically arise for matter content other than a massless scalar field) related to the presence of a Maxwell field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.