Diabetic retinopathy (DR) is the main cause of blindness in the working-age population in developed countries. Digital color fundus images can be analyzed to detect lesions for large-scale screening. Thereby, automated systems can be helpful in the diagnosis of this disease. The aim of this study was to develop a method to automatically detect red lesions (RLs) in retinal images, including hemorrhages and microaneurysms. These signs are the earliest indicators of DR. Firstly, we performed a novel preprocessing stage to normalize the inter-image and intra-image appearance and enhance the retinal structures. Secondly, the Entropy Rate Superpixel method was used to segment the potential RL candidates. Then, we reduced superpixel candidates by combining inaccurately fragmented regions within structures. Finally, we classified the superpixels using a multilayer perceptron neural network. The used database contained 564 fundus images. The DB was randomly divided into a training set and a test set. Results on the test set were measured using two different criteria. With a pixel-based criterion, we obtained a sensitivity of 81.43% and a positive predictive value of 86.59%. Using an image-based criterion, we reached 84.04% sensitivity, 85.00% specificity and 84.45% accuracy. The algorithm was also evaluated on the DiaretDB1 database. The proposed method could help specialists in the detection of RLs in diabetic patients.
Diabetic retinopathy (DR) is characterized by the presence of red lesions (RLs), such as microaneurysms and hemorrhages, and bright lesions, such as exudates (EXs). Early DR diagnosis is paramount to prevent serious sight damage. Computer-assisted diagnostic systems are based on the detection of those lesions through the analysis of fundus images. In this paper, a novel method is proposed for the automatic detection of RLs and EXs. As the main contribution, the fundus image was decomposed into various layers, including the lesion candidates, the reflective features of the retina, and the choroidal vasculature visible in tigroid retinas. We used a proprietary database containing 564 images, randomly divided into a training set and a test set, and the public database DiaretDB1 to verify the robustness of the algorithm. Lesion detection results were computed per pixel and per image. Using the proprietary database, 88.34% per-image accuracy (ACCi), 91.07% per-pixel positive predictive value (PPVp), and 85.25% per-pixel sensitivity (SEp) were reached for the detection of RLs. Using the public database, 90.16% ACCi, 96.26% PPV_p, and 84.79% SEp were obtained. As for the detection of EXs, 95.41% ACCi, 96.01% PPV_p, and 89.42% SE_p were reached with the proprietary database. Using the public database, 91.80% ACCi, 98.59% PPVp, and 91.65% SEp were obtained. The proposed method could be useful to aid in the diagnosis of DR, reducing the workload of specialists and improving the attention to diabetic patients.
Normal pressure hydrocephalus (NPH) encompasses a heterogeneous group of disorders generally characterized by clinical symptoms, ventriculomegaly and anomalous cerebrospinal fluid (CSF) dynamics. Lumbar infusion tests (ITs) are frequently performed in the preoperatory evaluation of patients who show NPH features. The analysis of intracranial pressure (ICP) signals recorded during ITs could be useful to better understand the pathophysiology underlying NPH and to assist treatment decisions. In this study, 131 ICP signals recorded during ITs were analysed using two continuous wavelet transform (CWT)-derived parameters: Jensen divergence (JD) and spectral flux (SF). These parameters were studied in two frequency bands, associated with different components of the signal: (0.15-0.3 Hz), related to respiratory blood pressure oscillations; and (0.67-2.5 Hz), related to ICP pulse waves. Statistically significant differences ( < 1.70 × 10, Bonferroni-corrected Wilcoxon signed-rank tests) in pairwise comparisons between phases of ITs were found using the mean and standard deviation of JD and SF. These differences were mainly found in , where a lower irregularity and variability, together with less prominent time-frequency fluctuations, were found in the hypertension phase of ITs. Our results suggest that wavelet analysis could be useful for understanding CSF dynamics in NPH.This article is part of the theme issue 'Redundancy rules: the continuous wavelet transform comes of age'.
Diabetic retinopathy (DR) is one of the most common causes of visual loss in developed countries. Computer-aided diagnosis systems aimed at detecting DR can reduce the workload of ophthalmologists in screening programs. Nevertheless, a large number of retinal images cannot be analyzed by physicians and automatic methods due to poor quality. Automatic retinal image quality assessment (RIQA) is needed before image analysis. The purpose of this study was to combine novel generic quality features to develop a RIQA method. Several features were calculated from retinal images to achieve this goal. Features derived from the spatial and spectral entropy-based quality (SSEQ) and the natural images quality evaluator (NIQE) methods were extracted. They were combined with novel sharpness and luminosity measures based on the continuous wavelet transform (CWT) and the hue saturation value (HSV) color model, respectively. A subset of non-redundant features was selected using the fast correlation-based filter (FCBF) method. Subsequently, a multilayer perceptron (MLP) neural network was used to obtain the quality of images from the selected features. Classification results achieved 91.46% accuracy, 92.04% sensitivity, and 87.92% specificity. Results suggest that the proposed RIQA method could be applied in a more general computer-aided diagnosis system aimed at detecting a variety of retinal pathologies such as DR and age-related macular degeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.