Late Miocene plutons in coastal Chiapas, Mexico, represent the roots of an extinct magmatic arc. Miocene granitoids of calc-alkaline composition and arc chemistry intruded into and were deformed within the Tonalá mylonite belt in the middle to upper crust. The mylonite belt is a crustal-scale shear zone extending along the western margin of the Chiapas Massif for ~150 km. Deformation is characterized by a dominantly subhorizontal lineation and subvertical foliation along a strikingly linear zone that trends ~310°. Mylonitic fabrics contain ambiguous but dominantly sinistral shear indicators. Intrusions are interpreted as syntectonic on the basis of similar U-Pb zircon crystallization age estimates (ca. 10 Ma) and the cooling age estimates obtained on neoformed micas in the mylonite. The plutons are elongated, their long axis is parallel to shear zone, and some plutons show markedly asymmetric outcrop patterns, with sheared tails that trail behind the intrusions and that are consistent with sinistral displacement. Parts of plutons were mylonitized by continuous deformation in the Tonalá shear zone, locally developing intricate pseudotachylyte and cataclasite veins slightly oblique to the mylonite foliation. Outside of the shear zone, plutons preserve magmatic fabrics. These observations are consistent with features common to syntectonic granites interpreted to have been emplaced along strike-slip shear zones in a transpressional setting. We interpret the Tonalá mylonites as representing a relict transform boundary that was slightly oblique to the Polochic-Motagua fault system, which accommodated over 100 km of sinistral displacement between the Chortis block (on the Caribbean plate) and Chiapas (on the North America plate) in late Miocene time.
Stratigraphic relationships, detrital zircon provenance, U-Pb and 40 Ar/ 39 Ar geochronology, and trace element geochemistry in volcanic and sedimentary rocks of the Sierra homocline of central Chiapas near La Angostura reservoir in Mexico document an extensive pulse of Early-Middle Jurassic arc magmatism in rocks that overlie and intrude the Permian-Triassic Chiapas massif. Upper Jurassic rift-basin strata unconformably overlie the volcanic rocks and the massif. A Pliensbachian U-Pb (zircon) SHRIMP (sensitive high-resolution ion microprobe) age from porphyritic andesite (191.0 ± 3.0 Ma), Early to Middle Jurassic 40 Ar/ 39 Ar dates from andesitic dikes, U-Pb grain ages of detrital zircons in overlying strata (196-161 Ma), and previously reported K-Ar dates indicate that subduction-related magmatism occurred in the western portion of the Maya block from Early to latest Middle Jurassic time. We assign the volcanic rocks to the La Silla Formation, which correlates with the informal Pueblo Viejo andesite of the Cintalapa and Uzpanapa regions to the northwest. La Silla magmatism predates opening of the Gulf of Mexico Basin. The Todos Santos Formation, which overlies La Silla Formation, was deposited in extensional basins during the early stages of gulf opening. We recognize a lower El Diamante Member of the Todos Santos, consisting of red fl uvial sandstone, mudstone, and minor conglomerate containing primarily volcanic-lithic detritus; this member is characterized by a nearly unimodal Jurassic detrital zircon age population that indicates a Callovian or younger depositional age. Volcanic activity continued into the upper part of the El Diamante Member, but with a more mafi c character. We also recognize an upper member, which we term the Jericó Member. This member is characterized by thickly bedded, coarse-grained pebbly arkose intercalated with several thick intervals (tens of meters) of conglomerate and pebbly sandstone. Sandstone petrology indicates a source in the granitic rocks of the Chiapas massif, with a tendency to show deep-seated sources and a diverse zircon population in the upper part of the section. The upper Todos Santos Formation in the study area is gradational into the overlying San Ricardo Formation ( KimmeridgianTithonian ). The La Silla Formation was deposited in volcanic-complex environments, with a clear lack of differentiated vol canic rocks. Fluvial strata of the El Diamante Member were deposited in a mud-rich sinuous river system. The Jericó Member was deposited in large, sand-rich fl uvial systems, which probably represent deposits of riftaxis trunk streams; conglomerate facies were deposited in adjacent and interfi ngering alluvial fan systems. We suggest that the stratigraphic record of the western Maya block records a transition from volcanic arc to intra-arc basin and subsequently to rift basin during Pliensbachian to Oxfordian time.
Abstract. Phase 1 of the Colorado Plateau Coring Project (CPCP-I) recovered a total of over 850 m of stratigraphically overlapping core from three coreholes at two sites in the Early to Middle and Late Triassic age largely fluvial Moenkopi and Chinle formations in Petrified Forest National Park (PFNP), northeastern Arizona, USA. Coring took place during November and December of 2013 and the project is now in its post-drilling science phase. The CPCP cores have abundant detrital zircon-producing layers (with survey LA-ICP-MS dates selectively resampled for CA-ID-TIMS U-Pb ages ranging in age from at least 210 to 241 Ma), which together with their magnetic polarity stratigraphy demonstrate that a globally exportable timescale can be produced from these continental sequences and in the process show that a prominent gap in the calibrated Phanerozoic record can be filled. The portion of core CPCP-PFNP13-1A for which the polarity stratigraphy has been completed thus far spans ∼215 to 209 Ma of the Late Triassic age, and strongly validates the longer Newark-Hartford Astrochronostratigraphic-calibrated magnetic Polarity Time-Scale (APTS) based on cores recovered in the 1990s during the Newark Basin Coring Project (NBCP). Core recovery was ∼100 % in all holes (Table 1). The coreholes were inclined ∼60–75∘ approximately to the south to ensure azimuthal orientation in the nearly flat-lying bedding, critical to the interpretation of paleomagentic polarity stratigraphy. The two longest of the cores (CPCP-PFNP13-1A and 2B) were CT-scanned in their entirety at the University of Texas High Resolution X-ray CT Facility in Austin, TX, and subsequently along with 2A, all cores were split and processed at the CSDCO/LacCore Facility, in Minneapolis, MN, where they were scanned for physical property logs and imaging. While remaining the property of the Federal Government, the archive half of each core is curated at the NSF-sponsored LacCore Core Repository and the working half is stored at the Rutgers University Core Repository in Piscataway, NJ, where the initial sampling party was held in 2015 with several additional sampling events following. Additional planned study will recover the rest of the polarity stratigraphy of the cores as additional zircon ages, sedimentary structure and paleosol facies analysis, stable isotope geochemistry, and calibrated XRF core scanning are accomplished. Together with strategic outcrop studies in Petrified Forest National Park and environs, these cores will allow the vast amount of surface paleontological and paleoenvironmental information recorded in the continental Triassic of western North America to be confidently placed in a secure context along with important events such as the giant Manicouagan impact at ∼215.5 Ma (Ramezani et al., 2005) and long wavelength astronomical cycles pacing global environmental change and trends in atmospheric gas composition during the dawn of the dinosaurs.
Twenty‐eight selected sites (individual beds) in the Moenave Formation at the Echo Cliffs, northern Arizona, strata give a Hettangian paleomagnetic pole at 63.7°N, 59.7°E (dp = 2.6°, dm = 5.1°). The Wingate Sandstone and Rock Point Formation at Comb Ridge, southeast Utah, provide a Rhaetian paleopole at 57.4°N, 56.6°E (N = 16 sites; dp = 3.4, dm = 6.5). High unblocking temperatures (>600°C), high coercivity, and data analyses indicate that the characteristic magnetization is primarily a chemical remanence residing in hematite. The Hettangian and Rhaetian poles are statistically indistinguishable (at 95% confidence), they resemble existing data for the Glen Canyon Group, and they provide further validation to the J1 cusp of the North American apparent pole wander path (APWP). The red siltstone and upper members of the Chinle Group, on the south flank of the Uinta Mountains, northern Utah, define a Rhaetian pole at 51.6°N, 70.9°E (N = 20 sites; dp = 3.5°, dm = 6.9°). The Gartra and upper members of the Chinle Group in the north flank of the Uinta Mountains, give paleopoles at 52.0°N, 100.3°E (N = 6 sites; dp = 5.4°, dm = 10.5°) and 50.9°N, 50.1°E (N = 5 sites; dp = 8.8°, dm = 17.5°), respectively. These data indicate no significant rotation of the Uinta Mountains with respect to the craton. In total, data for the plateau and its bordering region of Cenozoic uplifts support estimates of small rotation of the plateau and provide evidence against the hypothesis of a Late Triassic standstill of the North American APWP. Our magnetostratigraphic results are consistent with lithographic and biostratigraphic data that place the Triassic‐Jurassic boundary within the Dinosaur Canyon Member of the Moenave Formation, not at a regional hiatus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.