Single and few layers of the two-dimensional (2D) semimetal ZrTe are grown by molecular beam epitaxy on InAs(111)/Si(111) substrates. Excellent rotational commensurability, van der Waals gap at the interface and moiré pattern are observed indicating good registry between the ZrTe epilayer and the substrate through weak van der Waals forces. The electronic band structure imaged by angle resolved photoelectron spectroscopy shows that valence and conduction bands cross at the Fermi level exhibiting abrupt linear dispersions. The latter indicates massless Dirac Fermions which are maintained down to the 2D limit suggesting that single-layer ZrTe could be considered as the electronic analogue of graphene.
Janus single-layer transition metal dichalcogenides, in which the two chalcogen layers have a different chemical nature, push chemical composition control beyond what is usually achievable with van der Waals heterostructures. Here, we report such a Janus compound, SPtSe, which is predicted to exhibit strong Rashba spin–orbit coupling. We synthetized it by conversion of a single-layer of PtSe2 on Pt(111) via sulfurization under H2S atmosphere. Our in situ and operando structural analysis with grazing incidence synchrotron X-ray diffraction reveals the process by which the Janus alloy forms. The crystalline long-range order of the as-grown PtSe2 monolayer is first lost due to thermal annealing. A subsequent recrystallization in presence of a source of sulfur yields a highly ordered SPtSe alloy, which is isostructural to the pristine PtSe2. The chemical composition is resolved, layer-by-layer, using angle-resolved X-ray photoelectron spectroscopy, demonstrating that Se-by-S substitution occurs selectively in the topmost chalcogen layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.