Context. Most investigations of the X-ray variability of active galactic nuclei (AGN) have been concentrated on the detailed analyses of individual, nearby sources. A relatively small number of studies have treated the ensemble behaviour of the more general AGN population in wider regions of the luminosity-redshift plane. Aims. We want to determine the ensemble variability properties of a rich AGN sample, called Multi-Epoch XMM Serendipitous AGN Sample (MEXSAS), extracted from the fifth release of the XMM-Newton Serendipitous Source Catalogue (XMMSSC-DR5), with redshift between ∼0.1 and ∼5, and X-ray luminosities in the 0.5-4.5 keV band between ∼10 42 erg/s and ∼10 47 erg/s. Methods. We urge caution on the use of the normalised excess variance (NXS), noting that it may lead to underestimate variability if used improperly. We use the structure function (SF), updating our previous analysis for a smaller sample. We propose a correction to the NXS variability estimator, taking account of the light curve duration in the rest frame on the basis of the knowledge of the variability behaviour gained by SF studies. Results. We find an ensemble increase of the X-ray variability with the rest-frame time lag τ, given by SF ∝ τ 0.12. We confirm an inverse dependence on the X-ray luminosity, approximately as SF ∝ L −0.19 X. We analyse the SF in different X-ray bands, finding a dependence of the variability on the frequency as SF ∝ ν −0.15 , corresponding to a so-called softer when brighter trend. In turn, this dependence allows us to parametrically correct the variability estimated in observer-frame bands to that in the rest frame, resulting in a moderate (15%) shift upwards (V-correction). Conclusions. Ensemble X-ray variability of AGNs is best described by the structure function. An improper use of the normalised excess variance may lead to an underestimate of the intrinsic variability, so that appropriate corrections to the data or the models must be applied to prevent these effects.
Targeted searches of continuous waves from spinning neutron stars normally assume that the frequency of the gravitational wave signal is at a given known ratio with respect to the rotational frequency of the source, e.g. twice for an asymmetric neutron star rotating around a principal axis of inertia. In fact this assumption may well be invalid if, for instance, the gravitational wave signal is due to a solid core rotating at a slightly different rate with respect to the star crust. In this paper we present a method for narrow-band searches of continuous gravitational wave signals from known pulsars in the data of interferometric detectors. This method assumes source position is known to high accuracy, while a small frequency and spin-down range around the electromagnetic-inferred values is explored. Barycentric and spin-down corrections are done with an efficient time-domain procedure. Sensitivity and computational efficiency estimates are given and results of tests done using simulated data are also discussed.
Substantial evidence in the last few decades suggests that outflows from supermassive black holes (SMBH) may play a significant role in the evolution of galaxies. These outflows, powered by active galactic nuclei (AGN), are thought to be the fundamental mechanism by which the SMBH transfers a significant fraction of its accretion energy to the surrounding environment. Large-scale outflows known as warm absorbers (WA) and fast disk winds known as ultra-fast outflows (UFO) are commonly found in the spectra of many Seyfert galaxies and quasars, and a correlation has been suggested between them. Recent detections of low ionization and low column density outflows, but with a high velocity comparable to UFOs, challenge such initial possible correlations. Observations of UFOs in AGN indicate that their energetics may be enough to have an impact on the interstellar medium (ISM). However, observational evidence of the interaction between the inner high-ionization outflow and the ISM is still missing. We present here the spectral analysis of 12 XMM-Newton/EPIC archival observations of the quasar PG 1114+445, aimed at studying the complex outflowing nature of its absorbers. Our analysis revealed the presence of three absorbing structures. We find a WA with velocity v ∼ 530 km s −1 , ionization log ξ/erg cm s −1 ∼ 0.35, and column density log N H /cm −2 ∼ 22, and a UFO with v out ∼ 0.145c, log ξ/erg cm s −1 ∼ 4, and log N H /cm −2 ∼ 23. We also find an additional absorber in the soft X-rays (E < 2 keV) with velocity comparable to that of the UFO (v out ∼ 0.120c), but ionization (log ξ/erg cm s −1 ∼ 0.5) and column density (log N H /cm −2 ∼ 21.5) comparable with those of the WA. The ionization, velocity, and variability of the three absorbers indicate an origin in a multiphase and multiscale outflow, consistent with entrainment of the clumpy ISM by an inner UFO moving at ∼ 15% the speed of light, producing an entrained ultra-fast outflow (E-UFO).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.