An important topic in the study of the time series behavior and, in particular, meteorological time series is the long-range dependence. This paper explores the behavior of rainfall variations in different periods, using long-range correlations analysis. Semivariograms and Hurst exponent were applied to historical data in different pluviometric stations of the Río Bravo-San Juan watershed, at the hydrographic RH-24 Mexico region. The database was provided by the Water National Commission (CONAGUA). Using the semivariograms, the Hurst exponent was obtained and used as an input to perform a cluster analysis of rainfall stations. Groups of homogeneous samples that might be useful in a regional frequency analysis were obtained through the process.
When conducting an analysis of nature’s time series, such as meteorological ones, an important matter is a long-range dependence to quantify the global behavior of the series and connect it with other physical characteristics of the region of study. In this paper, we applied the Higuchi fractal dimension and the Hurst exponent (rescaled range) to quantify the relative trend underlying the time series of historical data from 17 of the 34 weather stations located in the Río Bravo-San Juan Basin, Mexico; these data were provided by the National Water Commission CONAGUA) in Mexico. In this way, this work aims to perform a comparative study about the level of persistency obtained by using the Higuchi fractal dimension and Hurst exponent for each station of the basin. The comparison is supported by a climate clustering of the stations, according to the Köppen classification. Results showed a better fitting between the climate of each station and its Higuchi fractal dimension obtained than when using the Hurst exponent. In fact, we found that the more the aridity of the zone the more the persistency of rainfall, according to Higuchi’s values. In turn, we found more relation between the Hurst exponent and the accumulated amount of rainfall. These are relations between the climate and the long-term persistency of rainfall in the basin that could help to better understand and complete the climatological models of the study region. Trends between the fractal exponents used and the accumulated annual rainfall were also analyzed.
Variogram models are a valuable tool used to analyze the variability of a time series; such variability usually entails a spherical or exponential behavior, and so, models based on such functions are commonly used to fit and explain a time series. Variograms have a quasi-periodic structure for rainfall cases, and some extra steps are required to analyze their entire behavior. In this work, we detailed a procedure for a complete analysis of rainfall time series, from the construction of the experimental variogram to curve fitting with well-known spherical and exponential models, and finally proposed a novel model: quadratic–exponential. Our model was developed based on the analysis of 6 out of 30 rainfall stations from our case study: the Río Bravo–San Juan basin, and was constructed from the exponential model while introducing a quadratic behavior near to the origin and taking into account the fact that the maximal variability of the process is known. Considering a sample with diverse Hurst exponents, the stations were selected. The results obtained show robustness in our proposed model, reaching a good fit with and without the nugget effect for different Hurst exponents. This contrasts to previous models, which show good outcomes only without the nugget effect.
Air-quality monitoring and analysis are initial parts of a comprehensive strategy to prevent air pollution in cities. In such a context, statistical tools play an important role in determining the [d=R1]time-series trendstrend of time series, locating areas with high [d=R1]pollutant concentrationsconcentration of pollutants, and building predictive models. In this work, we analyzed the spatio-temporal behavior of the pollutant PM10 in the Monterrey Metropolitan Area (MMA), Mexico during the period 2010–2018 by applying statistical analysis to the time series of seven environmental stations. [d=R1]First, weWe used experimental variograms and scientific visualization to determine the general trends and variability in time. Then, fractal exponents (the Hurst rescaled range and Higuchi algorithm) were used to analyze the long-term dependence of the time series and characterize the study area by correlating that dependence with the geographical parameters of each environmental station. The results suggest a linear decrease in PM10 concentration, which showed an annual cyclicity[d=R1]. The, with the autumn-winter period [d=R1]wasas the most polluted and the spring-summer period [d=R1]wasas the least. Furthermore, it was found that the highest average concentrations are located in the western and high-altitude zones of the MMA, and that average concentration is related in a quadratic way to the Hurst and Higuchi exponents, which in turn are related to some geographic parameters. Therefore, [d=R1]in additionadditionally to the results for the MMA, the present paper shows three [d=R1]practicaluseful statistical methods for analyzing the spatio-temporal behavior of air quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.