Susceptibility to autoimmune insulin-dependent (type 1) diabetes mellitus is determined by a combination of environmental and genetic factors, which include variation in MHC genes on chromosome 6p21 (IDDM1) and the insulin gene on chromosome 11p15 (IDDM2). However, linkage to IDDM1 and IDDM2 cannot explain the clustering of type 1 diabetes in families, and a role for other genes is inferred. In the present report we describe linkage and association of type 1 diabetes to the CTLA-4 gene (cytotoxic T lymphocyte associated-4) on chromosome 2q33 (designated IDDM12). CTLA-4 is a strong candidate gene for T cell-mediated autoimmune disease because it encodes a T cell receptor that mediates T cell apoptosis and is a vital negative regulator of T cell activation. In addition, we provide supporting evidence that CTLA-4 is associated with susceptibility to Graves' disease, another organ-specific autoimmune disease.
The role of human chromosome 2 in type 1 diabetes was evaluated by analysing linkage and linkage disequilibrium at 21 microsatellite marker loci, using 348 affected sibpair families and 107 simplex families. The microsatellite D2S152 was linked to, and associated with, disease in families from three different populations. Our evidence localizes a new diabetes susceptibility gene, IDDM7, to within two centiMorgans of D2S152. This places it in a region of chromosome 2q that shows conserved synteny with the region of mouse chromosome 1 containing the murine type 1 diabetes gene, Idd5. These results demonstrate the utility of polymorphic microsatellites for linkage disequilibrium mapping of genes for complex diseases.
Celiac disease (CD), a malabsorption disorder of the small intestine, results from ingestion of gluten. The HLA risk factors involved in CD are well known but do not explain the entire genetic susceptibility. To determine the localization of other genetic risk factors, a systematic screening of the genome has been undertaken. The typing information of 281 markers on 110 affected sib pairs and their parents was used to test linkage. Systematic linkage analysis was first performed on 39 pairs in which both sibs had a symptomatic form of CD. Replication of the regions of interest was then carried out on 71 pairs in which one sib had a symptomatic form and the other a silent form of CD. In addition to the HLA loci, our study suggests that a risk factor in 5qter is involved in both forms of CD (symptomatic and silent). Furthermore, a factor on 11qter possibly differentiates the two forms. In contrast, none of the regions recently published was confirmed by the present screening.
Ankylosing spondylitis (AS) is an autoimmune disorder strongly associated with HLA-B27. A direct role of B27 molecules in the disease pathogenesis has been postulated, possibly by presenting to T cells an as-yet unidentified arthritogenic peptide that triggers the autoimmune response. There are nine HLA-B27 alleles differing from each other at one or more amino acid positions. It is important, for the identification of the arthritogenic peptide, to define which alleles, and therefore which polymorphic positions, predispose to the disease. Here, we report that HLA-B*2709 is not associated with AS, as it was not found in patients. HLA-B*2709 differs from the most frequent and disease-associated HLA-B*2705 allele for a single substitution (His vs. Asp) at position 116. Amino acid 116 is located at the bottom of the groove where the antigenic peptide sits, and it has been proven to influence the peptide-binding specificity of HLA class I molecules. The most likely interpretation of these data is that the differences in charge and size that accompany the His-to-Asp substitution exclude the acceptance of the arthritogenic peptide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.