Engineering the spectral properties of fluorophores, such as the enhancement of luminescence intensity, can be achieved through coupling with surface plasmons in metallic nanostructures. This process, referred to as metal-enhanced fluorescence, offers promise for a range of applications, including LEDs, sensor technology, microarrays and single-molecule studies. It becomes even more appealing when applied to colloidal semiconductor nanocrystals, which exhibit size-dependent optical properties, have high photochemical stability, and are characterized by broad excitation spectra and narrow emission bands. Other approaches have relied upon the coupling of fluorophores (typically organic dyes) to random distributions of metallic nanoparticles or nanoscale roughness in metallic films. Here, we develop a new strategy based on the highly reproducible fabrication of ordered arrays of gold nanostructures coupled to CdSe/ZnS nanocrystals dispersed in a polymer blend. We demonstrate the possibility of obtaining precise control and a high spatial selectivity of the fluorescence enhancement process.
Clostridium difficile is the etiological agent of antibiotic-associated diarrhea, a potentially serious condition frequently affecting elderly hospitalized patients. While tissue damage is primarily induced by two toxins, the mechanism of gut colonization, and particularly the role of bacterial adherence to the mucosa, remains to be clarified. Previous studies have shown binding of C. difficile whole cells to cultured cell lines and suggested the existence of multiple adhesins, only one of which has been molecularly characterized. In this paper, we have investigated tissue binding of C. difficile surface layer proteins (SLPs), which are the predominant outer surface components and are encoded by the slpA gene. The adherence of C. difficile to HEp-2 cells was studied by enzyme-linked immunosorbent assay and fluorescence-activated cell sorter analysis, which showed that antibodies to the high-molecular-weight (MW) SLP inhibited adherence. Immunohistochemical analysis of human gastrointestinal tissue sections revealed strong binding both to the surface epithelium lining the digestive cavities and to the subjacent lamina propria, while glands were negative. A similar pattern was observed in the mouse. By using purified recombinant SLPs, we show that binding is largely mediated by the high-MW SLP. By Western blotting analysis, we have identified two potential ligands of the C. difficile SLPs, one of which may be specific to the gut. By using purified extracellular matrix components immobilized on nitrocellulose, we also show SLP binding to collagen I, thrombospondin, and vitronectin, but not to collagen IV, fibronectin, or laminin. These results raise the possibility that the SLPs play a role both in the initial colonization of the gut by C. difficile and in the subsequent inflammatory reaction.
Herein, we report the DNA sequence of two human CD1 genes, R2 and R3, distinct from those encoding the CD1a, -b and -c antigens. Both genes appear to have an exon/intron structure analogous to the previously analyzed CD1 genes and to be functional on the basis of their sequence. Analysis of the variability patterns, potential intramolecular interactions and predicted secondary structure profile on an alignment of all known CD1 alpha chains suggest some shared structural features with major histocompatibility complex class I molecules in the alpha 1 domains but substantial differences in the alpha 2 domains. Sequence comparison shows that, while R2 is most related to CD1a, -b and -c, albeit to a somewhat lower degree than the latter are to themselves, R3 is more homologous to mouse than to human CD1, suggesting the existence of two functional classes within the CD1 gene family. We propose to retain the non-committal R2 and R3 names until the putative antigens have been identified and their tissue distribution has been established.
Thymocyte antigens CD1 [Thy,gp45,12] are thought to be the human counterparts of mouse thymus leukaemia (TL) antigens. Serological and biochemical analyses indicate that at least three subsets exist, the first of which (HTA 1/T6) was initially identified by the monoclonal antibody NA1/34. Like TL, CD1 are expressed on cortical thymocytes as well as on some lymphoid neoplasias, and resemble in structure major histocompatibility complex (MHC) class I antigens. However HTA 1/T6 is loosely associated with beta 2-microglobulin and is also found linked by a disulphide bridge to CD8(T8). A molecular genetic approach is needed to investigate the CD1 system, to clarify its relationship to TL antigens and to understand its regulation. We report the isolation of complementary DNA (cDNA) clones encoding a CD1 antigen. These clones reveal a novel family of genes which are MHC-related but are neither equivalent to mouse TL antigens nor linked to the MHC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.