A substantially enriched preparation of Alzheimer paired helical filaments (PHFs) has been used as a starting point for biochemical studies. Pronase treatment, which strips off adhering proteins, leaves a resistant core that is structurally intact. This has been used to raise a monoclonal antibody that decorates the filament core. The antibody has been used to follow the extraction of two peptide fragments (9.5 and 12 kDa) by immunoblotting. The link between the PHF as a morphological entity and these peptides has been established independently by photoaffinity labeling with a chemical ligand to the PHF core. Sequence analysis of these peptides was used to design oligonucleotide probes for cloning a cognate cDNA, which leads to its identification as human microtubule-associated tau protein. The sequencing of the 9.5- and 12-kDa peptides shows they are derived from a conserved region of tau containing three repeating segments. Since these fragments have been copurified with the Pronase-resistant core and are only released by subsequent steps, the corresponding part of the tau molecule must be tightly bound in the PHF core.
Cell fusion techniques have been used to produce hybrids between myeloma cells and antibody-producing cells. The hybrid lines derived are permanently adapted to grow in tissue culture and are capable of inducing antibody-producing tumors in mice. Spleens from mice immunized against sheep red blood cells (SRBC) were fused to an 8-azaguanine-resistant clone (X63-Ag8) of MOPC 21 myeloma. Over 50% of the derived hybrid lines produce and secrete immunoglobulins different from the MOPC 21 myeloma. About 10% of the hybrid lines exhibit anti-SRBC activity. The high proportion of antibody-producing hybrids suggests that the fusion involves a restricted fraction of the spleen cell population, probably cells committed to antibody production. In order to avoid the presence of the MOPC 21 heavy chain in the specific hybrids, another myeloma cell line (NSI/1-Ag4-1) has been used. This is a nonsecreting variant of the MOPC 21 myeloma which does not express heavy chains. Three anti-SRBC (probably of the mu, gamma2b and gamma1 classes, respectively) and two anti-2,4,6-trinitrophenyl (of the mu class) antibody-producing hybrids have been repeatedly cloned. By random selection and by selection of specific clones according to their lytic activity (clone plaque selection), a number of different lines have been constructed. Such lines express different combinations of the four possible chains of each hybrid line: the myeloma gamma and K chains and the specific antibody heavy and light chains. In three cases (Sp1, Sp2 and Sp7) it is shown that only the specific H and L combination has activity and that the myeloma chains are unable to substitute for them. In most cases lines have been derived which no longer express the MOPC 21 chains but only the specific antibody chains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.