We present a new constant round additively homomorphic commitment scheme with (amortized) computational and communication complexity linear in the size of the string committed to. Our scheme is based on the non-homomorphic commitment scheme of Cascudo et al. presented at PKC 2015. However, we manage to add the additive homomorphic property, while at the same time reducing the constants. In fact, when opening a large enough batch of commitments we achieve an amortized communication complexity converging to the length of the message committed to, i.e., we achieve close to rate 1 as the commitment protocol by Garay et al. from Eurocrypt 2014. A main technical improvement over the scheme mentioned above, and other schemes based on using error correcting codes for UC commitment, we develop a new technique which allows to based the extraction property on erasure decoding as opposed to error correction. This allows to use a code with significantly smaller minimal distance and allows to use codes without efficient decoding. Our scheme only relies on standard assumptions. Specifically we require a pseudorandom number generator, a linear error correcting code and an ideal oblivious transfer functionality. Based on this we prove our scheme secure in the Universal Composability (UC) framework against a static and malicious adversary corrupting any number of parties. On a practical note, our scheme improves significantly on the nonhomomorphic scheme of Cascudo et al. Based on their observations in regards to efficiency of using linear error correcting codes for commitments we conjecture that our commitment scheme might in practice be more efficient than all existing constructions of UC commitment, even non-homomorphic constructions and even constructions in the random oracle model. In particular, the amortized price of computing one of our commitments is less than that of evaluating a hash function once.
Abstract. We propose the first UC secure commitment scheme with (amortized) computational complexity linear in the size of the string committed to. After a preprocessing phase based on oblivious transfer, that only needs to be done once and for all, our scheme only requires a pseudorandom generator and a linear code with efficient encoding. We also construct an additively homomorphic version of our basic scheme using VSS. Furthermore we evaluate the concrete efficiency of our schemes and show that the amortized computational overhead is significantly lower than in the previous best constructions. In fact, our basic scheme has amortised concrete efficiency comparable with previous protocols in the Random Oracle Model even though it is constructed in the plain model.
Secure two-party computation (S2PC) allows two parties to compute a function on their joint inputs while leaking only the output of the function. At TCC 2009 Orlandi and Nielsen proposed the LEGO protocol for maliciously secure 2PC based on cut-and-choose of Yao's garbled circuits at the gate level and showed that this is asymptotically more efficient than on the circuit level. Since then the LEGO approach has been improved upon in several theoretical works, but never implemented. In this paper we describe further concrete improvements and provide the first implementation of a protocol from the LEGO family. Our protocol has a constant number of rounds and is optimized for the offline/online setting with function-independent preprocessing. We have benchmarked our prototype and find that our protocol can compete with all existing implementations and that it is often more efficient. As an example, in a LAN setting we can evaluate an AES-128 circuit with online latency down to 1.13 ms, while if evaluating 128 AES-128 circuits in parallel the amortized cost is 0.09 ms per AES-128. This online performance does not come at the price of offline inefficiency as we achieve comparable performance to previous, less general protocols, and significantly better if we ignore the cost of the function-independent preprocessing. Also, as our protocol has an optimal 2-round online phase it is significantly more efficient than previous protocols when considering a high latency network.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.