During summer 2007 Italy has experienced an epidemic caused by Chikungunya virus – the first large outbreak documented in a temperate climate country – with approximately 161 laboratory confirmed cases concentrated in two bordering villages in North–Eastern Italy comprising 3,968 inhabitants. The seroprevalence was recently estimated to be 10.2%. In this work we provide estimates of the transmission potential of the virus and we assess the efficacy of the measures undertaken by public health authorities to control the epidemic spread. To such aim, we developed a model describing the temporal dynamics of the competent vector, known as Aedes albopictus, explicitly depending on climatic factors, coupled to an epidemic transmission model describing the spread of the epidemic in both humans and mosquitoes. The cumulative number of notified cases predicted by the model was 185 on average (95% CI 117–278), in good agreement with observed data. The probability of observing a major outbreak after the introduction of an infective human case was estimated to be in the range of 32%–76%. We found that the basic reproduction number was in the range of 1.8–6 but it could have been even larger, depending on the density of mosquitoes, which in turn depends on seasonal meteorological effects, besides other local abiotic factors. These results confirm the increasing risk of tropical vector–borne diseases in temperate climate countries, as a consequence of globalization. However, our results show that an epidemic can be controlled by performing a timely intervention, even if the transmission potential of Chikungunya virus is sensibly high.
Background and Purpose-Results on the effect of weather on stroke occurrences are still confusing and controversial.The aim of this study was to retrospectively investigate in Tuscany (central Italy) the weather-related stroke events through the use of an innovative source of weather data (Reanalysis) together with an original statistical approach to quantify the prompt/delayed health effects of both cold and heat exposures. Methods-Daily stroke hospitalizations and meteorologic data from the Reanalysis 2 Achieve were obtained for the period 1997 to 2007. Generalized linear and additive models and an innovative modeling approach, the constrained segmented distributed lag model, were applied. Results-Both daily averages and day-to-day changes of air temperature and geopotential height (a measure that approximates the mean surface pressure) were selected as independent predictors of all stroke occurrences. In particular, a 5°C temperature decrease was associated with 16.5% increase of primary intracerebral hemorrhage of people Ն65 years of age. A general short-term cold effect on hospitalizations limited to 1 week after exposure was observed and, for the first time, a clear harvesting effect (deficit of hospitalization) for cold-related primary intracerebral hemorrhage was described. Day-to-day changes of meteorologic parameters disclosed characteristic U-and J-shaped relationships with stroke occurrences. Conclusions-Thanks to the intrinsic characteristic of Reanalysis, these results might simply be implemented in an operative forecast system regarding weather-related stroke events with the aim to develop preventive health plans. (Stroke. 2011;42:593-600.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.