River discharge is an important variable to measure in order to predict droughts and flood occurrences. Once the cross-section geometry of the river is known, discharge can be inferred from water level and surface flow velocity measurements. Since river discharges are of particular interest during extreme weather events, when river sites cannot be safely accessed, noncontact sensing technologies are particularly appealing. To this purpose, the present work proposes a prototype of a low-cost Continuous Wave (CW) Doppler radar sensor, able to monitor the surface flow velocity of rivers. The prototype is tested at two gauged sites in central Italy, along the Tiber River. The surface flow velocity distribution across the river is monitored by means of the analysis of the received Doppler signal. The surface velocity statistics are then extracted using a novel algorithm that is optimized to run on a microprocessor platform with minimal computing power (ArduinoUNO). In particular, the radar measurements are used to initialize a 2D Entropy-based Velocity Model (EVM) that is able to estimate river discharges in any flow condition. Finally, the results concerning the observed discharge provided by the EVM prove to be comparable with those obtained with more expensive commercial solutions. The results are important since the described methodology can be extended to small-size Doppler radar sensors onboard Unmanned Aerial Vehicles (UAVs), the latter providing a method for mapping surface velocity of rivers.
Abstract-The design of a Ku-band reconfigurable reflectarray antenna for emergency satellite communications is presented. Bidirectional high data rate satellite links are needed in emergency conditions where other telecommunication infrastructures are not available. In order to operate in this type of scenario, an antenna should be deployable, transportable, and easily repointable. The need of an automatic and fast satellite location and pointing system leads to a completely electronic reconfigurable antenna. The operative bandwidth is from 10.7 to 12.5 GHz for reception and from 14 up to 14.5 GHz for transmission (30% of relative bandwidth). The selected antenna architecture is based on a dual reflectarray system comprising a passive subreflectarray and an active main reflectarray made of reconfigurable 1-bit elementary cells based on PIN diodes.
This paper presents a feasibility study for a very high data rate receiver operating in the K/Ka-band suitable to future Moon exploration missions. The receiver specifications are outlined starting from the mission scenario and from a careful system analysis. The designed architecture uses a low noise front-end to down-convert the incoming K/Ka-band signal into a 3.7 GHz intermediate frequency (IF). For maximum flexibility, a software defined radio (SDR) is adopted for the I/Q demodulation and for the analog to digital conversion (ADC). The decoding operations and the data interface are carried out by a processor based on field programmable gate array (FPGA) circuits. To experimentally verify the above concepts, a preliminary front-end breadboard is implemented, operating between 27.5 and 30 GHz. The breadboard, which uses components off the shelf (COTS) and evaluation boards (EVBs), is characterized by a 46 dB gain, a 3.4 dB noise figure and a − 37 dBm input-referred 1 dB compression point. Finally, a 40 Msym / s quadrature phase shift keying (QPSK) signal is demodulated by means of a commercially available SDR, demonstrating the above concept. The importance of these results is that they have been obtained exploiting a class of miniaturized and low cost microwave integrated circuits currently available on the market, opening the way to a dense communication infrastructure on cislunar space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.