Paper aims: In this study, effective strategies to combine and select forecasting methods are proposed. In the selection strategy, the best performing forecasting method from a pool of methods is selected based on its accuracy, whereas the combination strategies are based on the mean methods' outputs and on the methods' accuracy. Originality: Despite the large amount of work in this area, the actual literature lacks of selection and combination strategies of forecasting methods for dealing with intermittent time series. Research method: The included forecasting methods are state-of-the-art approaches applied to industrial and academics forecasting problems. Experiments were performed to evaluate the performance of the proposed strategies using a spare part data set of an industry of elevators and a data set from the M3-Competition. Main findings: The results show that, in most cases, the accuracy of the demand forecasts can be improved when using the proposed selection and combination strategies. Implications for theory and practice: The proposed methodology can be applied to forecasting problems, covering a variety of characteristics (e.g., intermittency, trend). The results reveal that combination strategies have potential application, perform better than state-of-the-art models, and have comparable accuracy in intermittent series. Thus, they can be employed to improve production planning activities.
FASTEN is an H2020 project under a bilateral call UE-Brazil. Embraer is a global aerospace company, with manufacturing and assembly lines in Europe, Brazil and USA. FASTEN aims to advance IoT and IoT enabled applications to support Industry 4.0 concepts, namely in the area of automation and additive manufacturing. The project results will be demonstrated through two pilots: one in Brazil, lead by a ThyssenKrupp use case, and the other in Europe, at Embraer facilities in Portugal. The project results for the Embraer use case will be presented, with emphasis on bilateral collaboration gains provided by exploiting common frameworks for development and open architecture, and future opportunities for exploitation discussed.
The Industry 4.0 movement is driving innovation in manufacturing through the application of digital technologies, leading to solid performance improvements. In this context, this paper introduces a real-time analytical framework based on predictive, simulation and optimization technologies applied to decision support in manufacturing systems, enabled by an underlying reference implementation of an open Industrial Internet of Things (IIoT) platform. This architecture integrates critical equipment, manufacturing and corporate systems through a Unified IIoT Cloud Platform. A real case study on the aeronautic industry demonstrates the proposal feasibility of this architecture to enhance productivity, predict equipment failures and bring agility to react to unexpected events. In this case study, the monitoring tool displays the current status of the critical resources and the predictive tool calculates a probability of failure. When this probability reaches a certain threshold, the simulation tool is triggered to evaluate the impact of the disruption in the system’s productivity. Results from the tools are displayed online through an alert system so that each stakeholder is informed timely and in a contextualized way.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.