While global patterns of human genetic diversity are increasingly well characterized, the diversity of human languages remains less systematically described. Here, we outline the Grambank database. With over 400,000 data points and 2400 languages, Grambank is the largest comparative grammatical database available. The comprehensiveness of Grambank allows us to quantify the relative effects of genealogical inheritance and geographic proximity on the structural diversity of the world’s languages, evaluate constraints on linguistic diversity, and identify the world’s most unusual languages. An analysis of the consequences of language loss reveals that the reduction in diversity will be strikingly uneven across the major linguistic regions of the world. Without sustained efforts to document and revitalize endangered languages, our linguistic window into human history, cognition, and culture will be seriously fragmented.
Lexical borrowing, the transfer of words from one language to another, is one of the most frequent processes in language evolution. In order to detect borrowings, linguists make use of various strategies, combining evidence from various sources. Despite the increasing popularity of computational approaches in comparative linguistics, automated approaches to lexical borrowing detection are still in their infancy, disregarding many aspects of the evidence that is routinely considered by human experts. One example for this kind of evidence are phonological and phonotactic clues that are especially useful for the detection of recent borrowings that have not yet been adapted to the structure of their recipient languages. In this study, we test how these clues can be exploited in automated frameworks for borrowing detection. By modeling phonology and phonotactics with the support of Support Vector Machines, Markov models, and recurrent neural networks, we propose a framework for the supervised detection of borrowings in mono-lingual wordlists. Based on a substantially revised dataset in which lexical borrowings have been thoroughly annotated for 41 different languages from different families, featuring a large typological diversity, we use these models to conduct a series of experiments to investigate their performance in mono-lingual borrowing detection. While the general results appear largely unsatisfying at a first glance, further tests show that the performance of our models improves with increasing amounts of attested borrowings and in those cases where most borrowings were introduced by one donor language alone. Our results show that phonological and phonotactic clues derived from monolingual language data alone are often not sufficient to detect borrowings when using them in isolation. Based on our detailed findings, however, we express hope that they could prove to be useful in integrated approaches that take multi-lingual information into account.
We present an initial version of the Universal Dependencies (UD) treebank for Shipibo-Konibo, the first South American, Amazonian, Panoan and Peruvian language with a resource built under UD. We describe the linguistic aspects of how the tagset was defined and the treebank was annotated; in addition we present our specific treatment of linguistic units called clitics. Although the treebank is still under development, it allowed us to perform a typological comparison against Spanish, the predominant language in Peru, and dependency syntax parsing experiments in both monolingual and cross-lingual approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.