Although the classical antibiotic spectinomycin is a potent bacterial protein synthesis inhibitor, poor antimycobacterial activity limits its clinical application for treating tuberculosis. Using structure-based design, a novel semisynthetic series of spectinomycin analogs was generated with selective ribosomal inhibition and excellent narrow-spectrum antitubercular activity. In multiple murine infection models, these spectinamides were well tolerated, significantly reduced lung mycobacterial burden and increased survival. In vitro studies demonstrated a lack of cross-resistance with existing tuberculosis therapeutics, activity against MDR/XDR-tuberculosis, and an excellent pharmacological profile. Key to their potent antitubercular properties was their structural modification to evade the Rv1258c efflux pump, which is upregulated in MDR strains and is implicated in macrophage induced drug tolerance. The antitubercular efficacy of spectinamides demonstrates that synthetic modifications to classical antibiotics can overcome the challenge of intrinsic efflux pump-mediated resistance and expands opportunities for target based tuberculosis drug discovery.
Inadequate dosing and incomplete treatment regimens, coupled with the ability of the tuberculosis bacilli to cause latent infections that are tolerant of currently used drugs, have fueled the rise of multidrug-resistant tuberculosis (MDR-TB). Treatment of MDR-TB infections is a major clinical challenge that has few viable or effective solutions; therefore patients face a poor prognosis and years of treatment. This review focuses on emerging drug classes that have the potential for treating MDR-TB and highlights their particular strengths as leads including their mode of action, in vivo efficacy, and key medicinal chemistry properties. Examples include the newly approved drugs bedaquiline and delaminid, and other agents in clinical and late preclinical development pipeline for the treatment of MDR-TB. Herein, we discuss the challenges to developing drugs to treat tuberculosis and how the field has adapted to these difficulties, with an emphasis on drug discovery approaches that might produce more effective agents and treatment regimens.
Based on these studies, NFAs have many useful antimycobacterial properties applicable to TB chemotherapy and probably possess a unique mode of action that results in good activity against active and dormant M. tuberculosis. Therefore, the further development of lead compounds in this series is warranted.
On
the basis of recently reported abyssinone II and olympicin A, a series
of chemically modified flavonoid phytochemicals were synthesized and
evaluated against Mycobacterium tuberculosis and
a panel of Gram-positive and -negative bacterial pathogens. Some of
the synthesized compounds exhibited good antibacterial activities
against Gram-positive pathogens including methicillin resistant Staphylococcus aureus with minimum inhibitory concentration
as low as 0.39 μg/mL. SAR analysis revealed that the 2-hydrophobic
substituent and the 4-hydrogen bond donor/acceptor of the 4-chromanone
scaffold together with the hydroxy groups at 5- and 7-positions enhanced
antibacterial activities; the 2′,4′-dihydroxylated A
ring and the lipophilic substituted B ring of chalcone derivatives
were pharmacophoric elements for antibacterial activities. Mode of
action studies performed on selected compounds revealed that they
dissipated the bacterial membrane potential, resulting in the inhibition
of macromolecular biosynthesis; further studies showed that selected
compounds inhibited DNA topoisomerase IV, suggesting complex mechanisms
of actions for compounds in this series.
In order to expand the structure-activity relationship of tetramic acid molecules with structural similarity to the antibiotic reutericyclin, 22 compounds were synthesized and tested against a panel of clinically relevant bacteria. Key structural changes on the tetramic acid core affected antibacterial activity. Various compounds in the N-alkyl 3-acetyltetramic acid series exhibited good activity against Gram-positive bacterial pathogens including Bacillus anthracis, Propionibacterium acnes, Enterococcus faecalis, and both Methicillin-sensitive and -resistant Staphylococcus aureus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.