In patients with minor ischemic stroke or high-risk TIA, those who received a combination of clopidogrel and aspirin had a lower risk of major ischemic events but a higher risk of major hemorrhage at 90 days than those who received aspirin alone. (Funded by the National Institute of Neurological Disorders and Stroke; POINT ClinicalTrials.gov number, NCT00991029 .).
BACKGROUND Patients with ischemic stroke or transient ischemic attack (TIA) are at increased risk for future cardiovascular events despite current preventive therapies. The identification of insulin resistance as a risk factor for stroke and myocardial infarction raised the possibility that pioglitazone, which improves insulin sensitivity, might benefit patients with cerebrovascular disease. METHODS In this multicenter, double-blind trial, we randomly assigned 3876 patients who had had a recent ischemic stroke or TIA to receive either pioglitazone (target dose, 45 mg daily) or placebo. Eligible patients did not have diabetes but were found to have insulin resistance on the basis of a score of more than 3.0 on the homeostasis model assessment of insulin resistance (HOMA-IR) index. The primary outcome was fatal or nonfatal stroke or myocardial infarction. RESULTS By 4.8 years, a primary outcome had occurred in 175 of 1939 patients (9.0%) in the pioglitazone group and in 228 of 1937 (11.8%) in the placebo group (hazard ratio in the pioglitazone group, 0.76; 95% confidence interval [CI], 0.62 to 0.93; P = 0.007). Diabetes developed in 73 patients (3.8%) and 149 patients (7.7%), respectively (hazard ratio, 0.48; 95% CI, 0.33 to 0.69; P<0.001). There was no significant between-group difference in all-cause mortality (hazard ratio, 0.93; 95% CI, 0.73 to 1.17; P = 0.52). Pioglitazone was associated with a greater frequency of weight gain exceeding 4.5 kg than was placebo (52.2% vs. 33.7%, P<0.001), edema (35.6% vs. 24.9%, P<0.001), and bone fracture requiring surgery or hospitalization (5.1% vs. 3.2%, P = 0.003). CONCLUSIONS In this trial involving patients without diabetes who had insulin resistance along with a recent history of ischemic stroke or TIA, the risk of stroke or myocardial infarction was lower among patients who received pioglitazone than among those who received placebo. Pioglitazone was also associated with a lower risk of diabetes but with higher risks of weight gain, edema, and fracture. (Funded by the National Institute of Neurological Disorders and Stroke; ClinicalTrials.gov number, NCT00091949.)
Low muscle strength is associated with mortality, presumably as a result of low muscle mass (sarcopenia) and physical inactivity. Grip strength was longitudinally collected in 1071 men over a 25-year period. Muscle mass was estimated by using 24-hour creatinine excretion and physical activity values, obtained by questionnaire. Survival analysis examined the impact of grip strength and rate of change in strength on all-cause mortality over 40 years. Lower and declining strength are associated with increased mortality, independent of physical activity and muscle mass. In men <60 years, rate of loss of strength was more important than the actual levels. In men >/=60 years, strength was more protective than the rate of loss, which persisted when muscle mass was considered. Strength and rate of change in strength contribute to the impact of sarcopenia on mortality. Although muscle mass and physical activity are important, they do not completely account for the impact of strength and changes in strength.
BACKGROUND Early termination of prolonged seizures with intravenous administration of benzodiazepines improves outcomes. For faster and more reliable administration, paramedics increasingly use an intramuscular route. METHODS This double-blind, randomized, noninferiority trial compared the efficacy of intramuscular midazolam with that of intravenous lorazepam for children and adults in status epilepticus treated by paramedics. Subjects whose convulsions had persisted for more than 5 minutes and who were still convulsing after paramedics arrived were given the study medication by either intramuscular autoinjector or intravenous infusion. The primary outcome was absence of seizures at the time of arrival in the emergency department without the need for rescue therapy. Secondary outcomes included endotracheal intubation, recurrent seizures, and timing of treatment relative to the cessation of convulsive seizures. This trial tested the hypothesis that intramuscular midazolam was noninferior to intravenous lorazepam by a margin of 10 percentage points. RESULTS At the time of arrival in the emergency department, seizures were absent without rescue therapy in 329 of 448 subjects (73.4%) in the intramuscular-midazolam group and in 282 of 445 (63.4%) in the intravenous-lorazepam group (absolute difference, 10 percentage points; 95% confidence interval, 4.0 to 16.1; P<0.001 for both noninferiority and superiority). The two treatment groups were similar with respect to need for endotracheal intubation (14.1% of subjects with intramuscular midazolam and 14.4% with intravenous lorazepam) and recurrence of seizures (11.4% and 10.6%, respectively). Among subjects whose seizures ceased before arrival in the emergency department, the median times to active treatment were 1.2 minutes in the intramuscular-midazolam group and 4.8 minutes in the intravenous-lorazepam group, with corresponding median times from active treatment to cessation of convulsions of 3.3 minutes and 1.6 minutes. Adverse-event rates were similar in the two groups. CONCLUSIONS For subjects in status epilepticus, intramuscular midazolam is at least as safe and effective as intravenous lorazepam for prehospital seizure cessation. (Funded by the National Institute of Neurological Disorders and Stroke and others; ClinicalTrials.gov number, NCT00809146.)
Cross-sectional and longitudinal age-associated reductions in power and isometric strength are described for the upper extremities. Over a 25-year period, repeated measures were taken approximately every 2 years from men and women in the Baltimore Longitudinal Study of Aging (BLSA). The longitudinal measures covered an average 9.6 years, range 1-25 years for men and an average 4.6 years, range 1-8 years for women. Strength and power declined beginning by age 40 in both women and men. Thereafter, power declined about 10% more than strength in men, while no significant differences were found in women. Age had a statistically independent influence on strength and power measures after adjusting for gender, height, weight, caloric expenditure, and muscle mass. Twenty-five-year longitudinal analyses in men confirmed the declines observed cross-sectionally, while no changes were observed in women over the 4-5 years of longitudinal data available. Further longitudinal studies are needed to understand the relationships between strength and power losses with age in women. The differences between power and strength changes with age in men argue for the importance of factors other than strength affecting power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.