This paper presents the application of predictive control to drug dosing during anesthesia in patients undergoing surgery. The performance of a generic predictive control strategy in drug dosing control, with a previously reported anesthesia-specific control algorithm, has been evaluated. The robustness properties of the predictive controller are evaluated with respect to inter- and intrapatient variability. A single-input (propofol) single-output (bispectral index, BIS) model of the patient has been assumed for prediction as well as for simulation. A set of 12 patient models were studied and interpatient variability and disturbances are used to assess robustness of the controller. Furthermore, the controller guarantees the stability in a desired range. The applicability of the predictive controller in a real-life environment via simulation studies has been assessed.
In this paper, a novel hierarchical global path planning approach for mobile robots in a cluttered environment is proposed. This approach has a three-level structure to obtain a feasible, safe and optimal path. In the first level, the triangular decomposition method is used to quickly establish a geometric free configuration space of the robot. In the second level, Dijkstra's algorithm is applied to find a collision-free path used as input reference for the next level. Lastly, a proposed particle swarm optimization called constrained multi-objective particle swarm optimization with an accelerated update methodology based on Pareto dominance principle is employed to generate the global optimal path with the focus on minimizing the path length and maximizing the path smoothness. The contribution of this work consists in: (i) The development of a novel optimal hierarchical global path planning approach for mobile robots moving in a cluttered environment; (ii) The development of proposed particle swarm optimization with an accelerated update methodology based on Pareto dominance principle to solve robot path planning problems; (iii) Providing optimal global robot paths in terms of the path length and the path smoothness taking into account the physical robot system limitations with computational efficiency. Simulation results in various types of environments are conducted in order to illustrate the superiority of the hierarchical approach. (C) 2017 Elsevier B.V. All rights reserved
Abstract. The Sequential Importance Sampling with Resampling (SISR) particle filter and the SISR with parameter resampling particle filter (SISR-PR) are evaluated for their performance in soil moisture assimilation and the consequent effect on baseflow generation. With respect to the resulting soil moisture time series, both filters perform appropriately. However, the SISR filter has a negative effect on the baseflow due to inconsistency between the parameter values and the states after the assimilation. In order to overcome this inconsistency, parameter resampling is applied along with the SISR filter, to obtain consistent parameter values with the analyzed soil moisture state. Extreme parameter replication, which could lead to a particle collapse, is avoided by the perturbation of the parameters with white noise. Both the modeled soil moisture and baseflow are improved if the complementary parameter resampling is applied. The SISR filter with parameter resampling offers an efficient way to deal with biased observations. The robustness of the methodology is evaluated for 3 model parameter sets and 3 assimilation frequencies. Overall, the results in this paper indicate that the particle filter is a promising tool for hydrologic modeling purposes, but that an additional parameter resampling may be necessary to consistently update all state variables and fluxes within the model.
In this study, changes in respiratory mechanics from healthy and chronic obstructive pulmonary disease (COPD) diagnosed patients are observed from identified fractional-order (FO) model parameters. The noninvasive forced oscillation technique is employed for lung function testing. Parameters on tissue damping and elastance are analyzed with respect to lung pathology and additional indexes developed from the identified model. The observations show that the proposed model may be used to detect changes in respiratory mechanics and offers a clear-cut separation between the healthy and COPD subject groups. Our conclusion is that an FO model is able to capture changes in viscoelasticity of the soft tissue in lungs with disease. Apart from this, nonlinear effects present in the measured signals were observed and analyzed via signal processing techniques and led to supporting evidence in relation to the expected phenomena from lung pathology in healthy and COPD patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.