Abstract. Quantitative histomorphometry (QH) is the process of computerized feature extraction from digitized tissue slide images to predict disease presence, behavior, and outcome. Feature stability between sites may be compromised by laboratory-specific variables including dye batch, slice thickness, and the whole slide scanner used. We present two new measures, preparation-induced instability score and latent instability score, to quantify feature instability across and within datasets. In a use case involving prostate cancer, we examined QH features which may detect cancer on whole slide images. Using our method, we found that five feature families (graph, shape, co-occurring gland tensor, sub-graph, and texture) were different between datasets in 19.7% to 48.6% of comparisons while the values expected without site variation were 4.2% to 4.6%. Color normalizing all images to a template did not reduce instability. Scanning the same 34 slides on three scanners demonstrated that Haralick features were most substantively affected by scanner variation, being unstable in 62% of comparisons. We found that unstable feature families performed significantly worse in inter-than intrasite classification. Our results appear to suggest QH features should be evaluated across sites to assess robustness, and class discriminability alone should not represent the benchmark for digital pathology feature selection.
Translation of radiomics into the clinic may require a more comprehensive understanding of the underlying morphologic tissue characteristics they reflect. In the context of prostate cancer (PCa), some studies have correlated gross histological measurements of gland lumen, epithelium, and nuclei with disease appearance on MRI. Quantitative histomorphometry (QH), like radiomics for radiologic images, is the computer based extraction of features for describing tumor morphology on digitized tissue images. In this work, we attempt to establish the histomorphometric basis for radiomic features for prostate cancer by (1) identifying the radiomic features from T2w MRI most discriminating of low vs. intermediate/high Gleason score, (2) identifying QH features correlated with the most discriminating radiomic features previously identified, and (3) evaluating the discriminative ability of QH features found to be correlated with spatially co-localized radiomic features. On a cohort of 36 patients (23 for training, 13 for validation), Gabor texture features were identified as being most predictive of Gleason grade on MRI (AUC of 0.69) and gland lumen shape features were identified as the most predictive QH features (AUC = 0.75). Our results suggest that the PCa grade discriminability of Gabor features is a consequence of variations in gland shape and morphology at the tissue level.
We identified and characterised methylator subtypes in BE and EAC. We further demonstrated the biological and clinical relevance of EAC methylator subtypes, which may ultimately help guide clinical management of patients with EAC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.