Perhaps a billion birds die annually from colliding with residential and commercial windows. Therefore, there is a societal need to develop technologies that reduce window collisions by birds. Many current window films that are applied to the external surface of windows have human-visible patterns that are not esthetically preferable. BirdShades have developed a short wavelength (ultraviolet) reflective film that appears as a slight tint to the human eye but should be highly visible to many bird species that see in this spectral range. We performed flight tunnel tests of whether the BirdShades external window film reduced the likelihood that two species of song bird (zebra finch, Taeniopygia guttata and brown-headed cowbird, Molothrus ater) collide with windows during daylight. We paid particular attention to simulate the lighting conditions that birds will experience while flying during the day. Our results indicate a 75–90% reduction in the likelihood of collision with BirdShades-treated compared with control windows, in forced choice trials. In more ecologically relevant comparison between trials where all windows were either treated or control windows, the estimated reduction in probability of collision was 30–50%. Further, both bird species slow their flight by approximately 25% when approaching windows treated with the BirdShades film, thereby reducing the force of collisions if they were to happen. Therefore, we conclude that the BirdShades external window film will be effective in reducing the risk of and damage caused to populations and property by birds’ collision with windows. As this ultraviolet-reflective film has no human-visible patterning to it, the product might be an esthetically more acceptable low cost solution to reducing bird-window collisions. Further, we call for testing of other mitigation technologies in lighting and ecological conditions that are more similar to what birds experience in real human-built environments and make suggestions for testing standards to assess collision-reducing technologies.
Bird-window collisions account for approximately one billion bird deaths annually in North America. Highly reflective or mirrored glass is associated with increased collision risk, but little is known about whether the reflection caused by differential lighting of otherwise clear glass influences the risk of window collisions. We aimed to determine whether reflection from a clear window influences daytime collision risk by manipulating the lighting conditions on exterior and interior window surfaces. In a flight tunnel, we flew domesticated Zebra Finches (Taeniopygia guttata) toward windows manipulated to be of higher or lower reflection and recorded collision risk and flight velocity using three-dimensional videography. We predicted that the risk of collision would be greater when windows were manipulated to be more reflective. We found no support for this prediction. In contrast, we found that collision risk decreased in the presence of a stronger reflection during bright, midday exterior-lighting conditions. We suggest that the influence of window reflection on daytime window collisions is more complex than often assumed and might involve previously unaccounted properties of light, such as the polarity of light. Lastly, we recommend directions for future collision research and non-invasive mitigation strategies which involve the manipulation of interior lighting throughout the day. Les conditions d'éclairage influent-elles sur les collisions d'oiseaux avec les fenêtres?RÉSUMÉ. Les collisions d'oiseaux avec les fenêtres représentent environ un milliard de mortalités d'oiseaux par an en Amérique du Nord. Les vitres très réfléchissantes ou à effet miroir sont associées à un risque accru de collision, mais on sait peu de choses sur l'influence de la réflexion causée par l'éclairage différentiel d'une vitre autrement claire sur le risque de collision. Nous avons cherché à déterminer si la réflexion d'une fenêtre claire influe sur le risque de collision de jour en manipulant les conditions d'éclairage sur la surface de fenêtres extérieures et intérieures. Dans un tunnel de vol, nous avons fait voler des Mandarins de Timor (Taeniopygia guttata) domestiques vers des fenêtres éclairées pour avoir une réflexion plus ou moins élevée, et nous avons enregistré le risque de collision et la vitesse de vol en utilisant la vidéographie tridimensionnelle. Nous avons prédit que le risque de collision serait plus élevé lorsque les fenêtres étaient éclairées pour être plus réfléchissantes. Nous n'avons trouvé aucune confirmation de cette prédiction. En revanche, nous avons constaté que le risque de collision diminuait en présence d'une réflexion plus forte dans des conditions d'éclairage extérieur intense en milieu de journée. Nous sommes d'avis que l'influence de la réflexion des fenêtres sur les collisions de jour est plus complexe que ce qui est souvent avancé, et pourrait mettre en cause des propriétés de la lumière non prises en compte auparavant, comme sa polarité. Enfin, nous recommandons des orientations pour les futures r...
Collisions with human-made structures are responsible for billions of bird deaths each year, resulting in ecological damage as well as regulatory and financial burdens to many industries. Acoustic signals can alert birds to obstacles in their flight paths in order to mitigate collisions, but these signals should be tailored to the sensory ecology of birds in flight as the effectiveness of various acoustic signals potentially depends on the influence of background noise and the relative ability of various sound types to propagate within a landscape. We measured changes in flight behaviors from zebra finches released into a flight corridor containing a physical obstacle, either in no-additional-sound control conditions or when exposed to one of four acoustic signals. We selected signals to test two frequency ranges (4–6 kHz or 6–8 kHz) and two temporal modulation patterns (broadband or frequency-modulated oscillating) to determine whether any particular combination of sound attributes elicited the strongest collision avoidance behaviors. We found that, relative to control flights, all sound treatments caused birds to maintain a greater distance from hazards and to adjust their flight trajectories before coming close to obstacles. There were no statistical differences among different sound treatments, but consistent trends within the data suggest that the 4–6 kHz frequency-modulated oscillating signal elicited the strongest avoidance behaviors. We conclude that a variety of acoustic signals can be effective as avian collision deterrents, at least in the context in which we tested these birds. These results may be most directly applicable in scenarios when birds are at risk of collisions with solid structures, such as wind turbines and communication towers, as opposed to window collisions or collisions involving artificial lighting. We recommend the incorporation of acoustic signals into multimodal collision deterrents and demonstrate the value of using behavioral data to assess collision risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.