Aphids damage directly or indirectly cultures by feeding and spreading diseases, leading to huge economical losses. So far, only the use of pesticides can mitigate their impact, causing severe health and environmental issues. Hence, innovative eco-friendly and low-cost solutions must be promoted apart from chemical control. Here, we have investigated the use of laser radiation as a reliable solution. We have analyzed the lethal dose required to kill 90% of a population for two major pest aphid species (Acyrthosiphon pisum and Rhopalosiphum padi). We showed that irradiating insects at an early stage (one-day old nymph) is crucial to lower the lethal dose without affecting plant growth and health. The laser is mostly lethal, but it can also cause insect stunting and a reduction of survivors’ fecundity. Nevertheless, we did not notice any significant visible effect on the offspring of the surviving irradiated generation. The estimated energy cost and the harmless effect of laser radiation on host plants show that this physics-based strategy can be a promising alternative to chemical pesticides.
Because our civilization has relied on pesticides to fight weeds, insects, and diseases since antiquity, the use of these chemicals has become natural and exclusive. Unfortunately, the use of pesticides has progressively had alarming effects on water quality, biodiversity, and human health. This paper proposes to improve farming practices by replacing pesticides with a laser-based robotic approach. This study focused on the neutralization of aphids, as they are among the most harmful pests for crops and complex to control. With the help of deep learning, we developed a mobile robot that spans crop rows, locates aphids, and neutralizes them with laser beams. We have built a prototype with the sole purpose of validating the localization-neutralization loop on a single seedling row. The experiments performed in our laboratory demonstrate the feasibility of detecting different lines of aphids (50% detected at 3 cm/s) and of neutralizing them (90% mortality) without impacting the growth of their host plants. The results are encouraging since aphids are one of the most challenging crop pests to eradicate. However, enhancements in detection and mainly in targeting are necessary to be useful in a real farming context. Moreover, robustness regarding field conditions should be evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.