The European Union's Water FrameworkDirective requires all water bodies to achieve 'good ecological status' by 2015 and this paper describes a rationale for defining 'good ecological status' based on diatoms, a significant component of the biological quality element 'macrophyte and phytobenthos'. 2. A database of benthic diatom samples collected over the past 20 years was assembled. New sampling, specifically for this project, was undertaken during 2004 to supplement these data. In total 1051 samples were included in the database with matching environmental data. 3. 'Reference sites', relatively unimpacted by human activity, were selected from this database by a series of screening steps and these sites were used to develop a site-specific reference typology. 4. Environmental variables not related to the pressure gradient were used to predict the 'expected' Trophic Diatom Index (TDI) values at each site. Site-specific TDI predictions were used to generate ecological quality ratios (EQRs) ranging from ‡1, where the diatom assemblage showed no impact, to (theoretically) 0, when the diatom assemblage was indicative of major anthropogenic activities. 5. The boundary between 'high' and 'good' status was defined as the 25th percentile of EQRs of all reference sites. The boundary between 'good' and 'moderate' status was set at the point at which nutrient-sensitive and nutrient-tolerant taxa were present in equal relative abundance. An ecological rationale for this threshold is outlined in the paper.
The EU's Water Framework Directive requires all surface water bodies to be classified according to their ecological status. As biological communities show both spatial and temporal heterogeneity, expressions of ecological status will, inevitably, have an element of uncertainty associated with them. A consequence of this environmental heterogeneity is that there is a risk that status inferred from one or more samples is different to the true status of that water body. In order to quantify the scale of temporal uncertainty associated with benthic diatoms, replicate samples were collected from sites across the ecological status gradient in lakes and rivers in the UK. Variability (expressed as standard deviation of temporal replicate samples from a single site) could be described using a polynomial function and this was then used to calculate the risk of placing a water body in the wrong ecological status class. This risk varied depending on the distance from the class boundaries and the number of replicates. Based on these data, we recommend that ecological status is determined from a number of samples collected from a site over a period of time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.