A voltage-activated inward-rectifying K+ conductance (lKi) appears in human promyelocytic leukemia (HL-60) cells during phorbol ester-induced differentiation into macrophages. This conductance was detected in the cells 24 hours after exposure to phorbol-12-myristate-13-acetate (PMA), as the cells began to express the macrophage phenotype, and continued to increase for 4 days after PMA exposure. The magnitude of inward current was a function of external K+; current was blocked by extracellular or intracellular Cs+ and by extracellular Ba++. Hyperpolarization produced activation at membrane potentials more negative than -80 mV, and a slower, partial inactivation also occurred at potentials more negative than -100 mV. This conductance was not detected in proliferating cells nor in granulocytes derived from HL-60 cells which were induced to differentiate with retinoic acid (RA). Exposure of differentiated macrophages to recombinant human CSF-1 produced inhibition of the lKi beginning within 1 minute after exposure. CSF-1 inhibition of lKi channels in cell-attached patches indicated that channel modulation was via intracellular mediators. The rapid inhibition of the inward rectifier by the macrophage-specific CSF-1 appears to be one of the earliest cellular responses to this factor.
HL-60 cells, a human promyelocytic leukemia cell line, contain amplified c-myc DNA sequences and mRNA transcripts. These cells can be induced to undergo macrophage differentiation by phorbol esters, which results in suppression of c-myc expression and cessation of cell proliferation. The nuclear matrix (NM), a nuclear skeleton resistant to DNase I digestion and high salt extraction, is proposed to be involved in DNA replication, gene regulation, and the correct distribution of DNA at mitosis. We have previously identified a nuclear-matrix-associated region (MAR) of the c-myc protooncogene to reside in a 1.4-kb region between Cla I and Eco RI restriction sites at the 3'-end of the gene. A 172-bp Dra I/Dra I subfragment of the 1.4-kb region was shown to be a major component of the MAR (myc-MAR), and this subfragment was demonstrated to be recognized by a nuclear protein (p25). In this report we demonstrate that phi X174 DNA, or the synthetic copolymers poly[d(G.C)] and poly[d(A.T)], are not effective suppressors of the binding of the myc-MAR to isolated NM, indicating that the binding sequence(s) are unique. We find that the addition of partially purified protein p25 increases the relative affinity of the myc-MAR for HL-60 NM in an in vitro assay system. NM isolated from HL-60 macrophages induced by phorbol esters retains significantly more myc-MAR DNA fragment in the presence of an excess amount of competitor DNA than does NM from untreated HL-60 cells. These data suggest that a change of the myc-MAR association with the NM occurs after monocytic differentiation of HL-60 cells.
Human promyelocytic leukemia (HL-60) cells display a novel voltage-dependent outward current under voltage clamp. This current is present at low levels in the proliferative state and in granulocytes derived from HL-60 cells which were induced to differentiate with retinoic acid. It is elevated in macrophages derived from HL-60 cells after exposure to phorbol-12-myristate-13-acetate (PMA). The current is carried primarily by K+, is blocked by Cs+ and by increased intracellular concentrations of Cl-. From a holding potential of -80 mV, significant activation required depolarization to +20 mV membrane potential. Activation was not influenced by intracellular Ca2+ (1-2 X 10(-6) M). These properties appear to differ significantly from the Ca2+-activated K+ channel and the delayed rectifier. The increase of this voltage-activated current in differentiation toward the macrophage, but not the granulocyte, suggests that this current is correlated specifically with macrophage differentiation.
A DNA binding activity which appeared in direct filter binding assays to show specificity for DNA modified by N-acetoxy-2-acetylaminofluorene (AAF), N-methyl-N-nitrosourea and methylmethanesulfonate (Moranelli and Lieberman, Proc. Natl. Acad. Sci. USA 77, 3201, 1980) has been further purified and characterized. Equilibrium competition binding experiments indicate this activity shows little, or no, preferential binding of AAF-modified DNA compared to single-stranded DNA and only a small preference compared to u.v.-irradiated DNA or double-stranded DNA. These findings demonstrate the difficulty of using direct filter binding assays when purifying proteins with a desired biological function and the need to perform competition assays when evaluating specificity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.