This study investigated how joint angle influences fascicle shortening dynamics of gastrocnemius medialis (GM) during explosive contractions, and the resulting impact on rate of torque development (RTD). Sixteen participants performed six sets of five maximal explosive voluntary isometric plantar flexions at -20°, -10°, 0° (neutral position), 10°, 20° and 30° of ankle angle, and five no-load ballistic plantar flexions. RTD assessed over all time windows (from 0 to 200 ms) was significantly lower in extreme plantar flexed (≥20°) and dorsiflexed (- 20°) positions compared to -10, 0° (475±105 Nm.s-1) and 10°. At these neutral positions, RTD was maximal and muscle fascicles mainly operated over the plateau of the force-length relationship. At 0°, fascicle shortening velocity peaked at 9.26±2.85 cm.s-1 (i.e., 28.2% of maximal shortening velocity measured during no-load ballistic condition). At 112 ms after RTD onset, fascicle force reached 208 ± 78 N (i.e., 85.6% of the theoretical maximum force at the corresponding shortening velocity) and was thereafter comprised within the 95% confidence interval of the force-velocity curve. This clearly indicates that muscle force reached the maximal force that accounts for the fascicle shortening velocity. These findings suggest that the dynamic behavior of muscle fascicles, and the associated fascicle shortening velocity, may influence the rapid force-generating capacity mainly from 100 ms of RTD onset. The present study provides important information to better understand the determinants of human muscle performance during explosive tasks.
This study aimed to investigate the correlations between players' mechanical capacities determined during off-and on-ice tests. Whole body force-velocity relationships were assessed in elite female ice hockey players (n = 17) during jumping [squat jump (SJ)], running (5 and 30 m) and skating (5 and 40 m) sprint tasks. Mechanical capacities estimates include relative maximal theoretical force (F 0rel ), velocity (V 0 ), power (P maxrel ), slope of the linear relationship between force relative to body mass and velocity (S FVrel ), maximal horizontal component of the ground reaction force to the corresponding resultant force (RF max ) and minimal rate of decrease of this ratio (D RF ). On-ice mechanical capacities (F 0rel , P maxrel , RF max and D RF ) largely-to-very largely correlated with 40-m skating split time (r ranging from 0.82 for D RF to −0.91 for P maxrel ; p < 0.001). Performance variables (SJ height, 30-m running and 40-m forward skating split time) and P maxrel demonstrated the largest associations between jumping, running and skating tasks (r ranging from −0.81 for 30-m sprint running time to 0.92 for SJ height; p < 0.001). Small (V 0 , S FVrel , D RF and force-velocity deficit) to very large (P maxrel ) correlations (r ranging from 0.58 to 0.72; p < 0.05) were obtained between mechanical variables inferred from off-and onice force-velocity tests. The capacity to generate high amounts of horizontal power and effective horizontal force during the first steps on the ice is paramount for forward skating sprint performance. Mechanical capacities determined during forward skating sprint could be considered in ice hockey testing to identify fitness and/or technical/training requirements.
We investigated the effects of the initial length of the muscle-tendon unit (MTU) and muscle pre-activation on muscle-tendon interactions during plantarflexion performed at maximal velocity. Ultrasound images of gastrocnemius medialis were obtained on 11 participants in three conditions: (a) active plantarflexion performed at maximal velocity from three increasingly stretched positions (10°, 20°, and 30° dorsiflexion), (b) passive plantarflexion induced by a quick release of the ankle joint from the same three positions, and (c) pre-activation, which consisted of a maximal isometric contraction of the plantarflexors at 10° of dorsiflexion followed by a quick release of ankle joint. During the active condition at maximal velocity, initial MTU stretch positively influenced ankle joint velocity (+15.3%) and tendinous tissues shortening velocity (+37.6%) but not the shortening velocity peak value reached by muscle fascicle. The muscle fascicle was shortened during the passive condition; however, its shortening velocity never exceeded peak velocity measured in the active condition. Muscle pre-activation resulted in a considerable increase in ankle joint (+114.7%) and tendinous tissues velocities (+239.1%), although we observed a decrease in muscle fascicle shortening velocity. During active plantarflexion at maximal velocity, initial MTU length positively influences ankle joint velocity by increasing the contribution of tendinous tissues. Although greater initial stretch of the plantarflexors (ie, 30° dorsiflexion) increased the passive velocity of the fascicle during initial movement, its peak velocity was not affected. As muscle pre-activation prevented reaching the maximal muscle fascicle shortening velocity, this condition should be used to characterize tendinous tissues rather than muscle contractile properties.
While heat exposure has been shown to increase the rate of force development (RFD), the underlying processes remain unknown. This study investigated the effect of heat on gastrocnemius medialis (GM) muscle-tendon properties and interactions. Sixteen participants performed electrically-evoked and voluntary contractions combined with ultrafast ultrasound under thermoneutral (CON: 26°C, core temperature 37.0±0.3°C, muscle temperature 34.0±1.1°C) and passive heat exposure (HOT: 47°C, core temperature 38.4±0.3°C, muscle temperature 37.0±0.8°C) conditions. Maximal voluntary force was unchanged while voluntary activation decreased (-4.6±8.7%, P=0.038) in HOT. Heat exposure increased RFD before 100 ms from contraction onset (+48.2±62.7%; P=0.013), without further changes after 100 ms. GM fascicle dynamics during electrically-evoked and voluntary contractions remained unchanged between conditions. Joint velocity at a given force was higher in HOT (+7.1±6.6%; P=0.004), while the fascicle force-velocity relationship was unchanged. Passive muscle stiffness and active tendon stiffness were lower in HOT than CON (P≤0.030). This study showed that heat-induced increases in early RFD may not be attributed to changes in contractile properties. Late RFD was unaltered, probably explained by decreased soft tissues' stiffness in heat. Investigations are required to explore the possible influence of neural drive and motor unit recruitment in the enhancement of explosive strength elicited by heat exposure.
The present study aimed to determine the effect of hyperthermia on both electrochemical and mechanical components of the electromechanical delay (EMD), using very-high-frame-rate ultrasound. Electrically evoked peak twitch force, EMD, electrochemical (Dm, i.e., delay between stimulation and muscle fascicle motion) and mechanical (Tm, i.e., delay between fascicle motion and force production onset) components of EMD were assessed in sixteen participants. Assessments were conducted in a control ambient environment (CON: 26°C, 34% relative humidity) and in hot ambient environment (HOT: 46-50°C, 18% relative humidity, after ~127 min of heat exposure). Following heat exposure, gastrocnemius medialis temperature was 37.0 ± 0.6°C in HOT vs. 34.0 ± 0.8°C in CON (P < 0.001). EMD was shorter (9.4 ± 0.8 ms) in HOT than CON (10.8 ± 0.6 ms, P < 0.001). Electrochemical processes were shorter in HOT than CON (4.0 ± 0.8 ms vs. 5.5 ± 0.9 ms, respectively, P < 0.001), while mechanical processes were unchanged (P = 0.622). These results demonstrate that hyperthermia reduces electromechanical delay via accelerated electrochemical processes while force transmission along the active and passive parts of the series elastic component is not affected following heat exposure. The present study demonstrates that heat exposure accelerates muscle contraction thanks to faster electrochemical processes. Further investigations during voluntary contractions would contribute to better understand how these findings translate into motor performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.