The worldwide infection rate for HIV-1 is estimated to be 14,000 per day, but only now, more than 20 years into the epidemic, are the immediate events between exposure to infectious virus and the establishment of infection becoming clear. Defining the mechanisms of HIV-1 transmission, the target cells involved and how the virus attaches to and fuses with these cells, could reveal ways to block the sexual spread of the virus. In this review, we will discuss how our increasing knowledge of the ways in which HIV-1 is transmitted is shaping the development of new, more sophisticated intervention strategies based on the application of vaginal or rectal microbicides.
The spread of the SARS-CoV-2 into a global pandemic within a few months of onset motivates the development of a rapidly scalable vaccine. Here, we present a self-amplifying RNA encoding the SARS-CoV-2 spike protein encapsulated within a lipid nanoparticle (LNP) as a vaccine. We observe remarkably high and dose-dependent SARS-CoV-2 specific antibody titers in mouse sera, as well as robust neutralization of both a pseudo-virus and wild-type virus. Upon further characterization we find that the neutralization is proportional to the quantity of specific IgG and of higher magnitude than recovered COVID-19 patients. saRNA LNP immunizations induce a Th1-biased response in mice, and there is no antibodydependent enhancement (ADE) observed. Finally, we observe high cellular responses, as characterized by IFN-γ production, upon re-stimulation with SARS-CoV-2 peptides. These data provide insight into the vaccine design and evaluation of immunogenicity to enable rapid translation to the clinic.
A topical microbicide reduces the probability of virus transmission when applied to the vagina or rectum of a person at risk of sexually acquiring HIV-1 infection. An effective microbicide could significantly reduce the global spread of HIV-1, particularly if women were able to use it covertly to protect themselves. A microbicide could target the incoming virus and either permanently inactivate it or reduce its infectivity, or it could block receptors on susceptible cells near the sites of transmission. We describe here how vaginal administration of the broadly neutralizing human monoclonal antibody b12 can protect macaques from simian-human immunodeficiency virus (SHIV) infection through the vagina. Only 3 of 12 animals receiving 5 mg b12 vaginally in either saline or a gel and then challenged vaginally (up to 2 h later) with SHIV-162P4 became infected. In contrast, infection occurred in 12 of 13 animals given various control agents under similar conditions. Lower amounts of b12 were less effective, suggesting that protection was dose dependent. These observations support the concept that viral entry inhibitors can help prevent the sexual transmission of HIV-1 to humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.