Quantifying the probability of larval exchange among marine populations is key to predicting local population dynamics and optimizing networks of marine protected areas. The pattern of connectivity among populations can be described by the measurement of a dispersal kernel. However, a statistically robust, empirical dispersal kernel has been lacking for any marine species. Here, we use genetic parentage analysis to quantify a dispersal kernel for the reef fish Elacatinus lori, demonstrating that dispersal declines exponentially with distance. The spatial scale of dispersal is an order of magnitude less than previous estimates-the median dispersal distance is just 1.7 km and no dispersal events exceed 16.4 km despite intensive sampling out to 30 km from source. Overlaid on this strong pattern is subtle spatial variation, but neither pelagic larval duration nor direction is associated with the probability of successful dispersal. Given the strong relationship between distance and dispersal, we show that distance-driven logistic models have strong power to predict dispersal probabilities. Moreover, connectivity matrices generated from these models are congruent with empirical estimates of spatial genetic structure, suggesting that the pattern of dispersal we uncovered reflects long-term patterns of gene flow. These results challenge assumptions regarding the spatial scale and presumed predictors of marine population connectivity. We conclude that if marine reserve networks aim to connect whole communities of fishes and conserve biodiversity broadly, then reserves that are close in space (<10 km) will accommodate those members of the community that are shortdistance dispersers.population connectivity | dispersal kernel | parentage analysis | marine protected areas | biological oceanography Q uantifying patterns of marine larval dispersal is a major goal of ecology and conservation biology (1-3). Many marine species have a bipartite life cycle that is characterized by a dispersive larval phase and a relatively sedentary adult phase. Thus, larval dispersal drives the exchange of individuals and alleles (i.e., connectivity) among populations within many marine metapopulations (4). In turn, connectivity influences population dynamics, microevolutionary processes, and the design of effective networks of marine reserves.Ecologists have long recognized that dispersal kernels offer a useful approach to quantifying patterns of dispersal (5, 6). Here, an empirical dispersal kernel is defined as a probability density function (p.d.f.) that can be integrated to yield the probability of successful dispersal over a given distance. Estimating a dispersal kernel requires that sampling be spatially extensive to capture longdistance dispersal (LDD) events-the tail of the kernel. Capturing the tail is essential to understanding ecological and evolutionary processes that are driven by LDD (7). Sampling must also be intensive to tighten the confidence intervals (CIs) associated with low-frequency LDD events. Despite a decades-long resea...
Individuals that forgo their own reproduction in animal societies represent an evolutionary paradox because it is not immediately apparent how natural selection can preserve the genes that underlie non-breeding strategies. Cooperative breeding theory provides a solution to the paradox: non-breeders benefit by helping relatives and/or inheriting breeding positions; non-breeders do not disperse to breed elsewhere because of ecological constraints. However, the question of why non-breeders do not contest to breed within their group has rarely been addressed. Here, we use a wild population of clownfish (Amphiprion percula), where non-breeders wait peacefully for years to inherit breeding positions, to show non-breeders will disperse when ecological constraints (risk of mortality during dispersal) are experimentally weakened. In addition, we show non-breeders will contest when social constraints (risk of eviction during contest) are experimentally relaxed. Our results show it is the combination of ecological and social constraints that promote the evolution of non-breeding strategies. The findings highlight parallels between, and potential for fruitful exchange between, cooperative breeding theory and economic bargaining theory: individuals will forgo their own reproduction and wait peacefully to inherit breeding positions (engage in cooperative options) when there are harsh ecological constraints (poor outside options) and harsh social constraints (poor inside options).
In species with biparental care, conflict arises over how much each parent provides to their offspring because both parents benefit from shifting the burden of care to the other. Here, we tested alternative hypotheses for how parents will negotiate offspring care using a wild population of clownfish (Amphiprion percula). We experimentally handicapped parents by fin-clipping the female in 23 groups, the male in 23 groups, and neither parent in 23 groups and measured changes in indicators of female, male, and pair effort in response to handicapping. First, we found that handicapping resulted in a decrease in the number of eggs laid by fin-clipped females and a decrease in the amount of parental care by fin-clipped males. Second, contrary to predictions, female effort did not change in response to the male being handicapped, or vice versa. Finally, the number of embryos that matured to hatching, an indicator of pair effort, was not influenced by the manipulation, suggesting that although the handicap was effective, clownfish do not face the predicted “cost to conflict” when one parent is handicapped. Together, these results test the generality of theoretical predictions and uncover novel questions about whether and how negotiations operate in systems where interests are aligned.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.