Extracellular vesicles are cell-derived membrane particles ranging from 30 to 5,000 nm in size, including exosomes, microvesicles, and apoptotic bodies. They are released under physiological conditions, but also upon cellular activation, senescence, and apoptosis. They play an important role in intercellular communication. Their release may also maintain cellular integrity by ridding the cell of damaging substances. This review describes the biogenesis, uptake, and detection of extracellular vesicles in addition to the impact that they have on recipient cells, focusing on mechanisms important in the pathophysiology of kidney diseases, such as thrombosis, angiogenesis, tissue regeneration, immune modulation, and inflammation. In kidney diseases, extracellular vesicles may be utilized as biomarkers, as they are detected in both blood and urine. Furthermore, they may contribute to the pathophysiology of renal disease while also having beneficial effects associated with tissue repair. Because of their role in the promotion of thrombosis, inflammation, and immune-mediated disease, they could be the target of drug therapy, whereas their favorable effects could be utilized therapeutically in acute and chronic kidney injury.
Background: GPR30 plays important roles in cardiometabolic regulation and cancer. Results: GPR30 forms a complex with a MAGUK and AKAP5 that constitutively inhibits cAMP production independently of G i/o and retains receptors in the plasma membrane.
Conclusion:The GPR30-MAGUK-AKAP5 complex mediates receptor signaling. Significance: These results present a new mechanism by which a receptor inhibits cAMP production.
The kinin-forming pathway is activated on endothelial cells and neutrophils when high-molecular weight kininogen (HK) is cleaved by plasma kallikrein liberating bradykinin, a potent mediator of inflammation. Kinins are released during inflammatory conditions such as vasculitis, associated with neutrophil influx around blood vessels. Some patients with vasculitis have elevated plasma levels of neutrophil-derived proteinase 3 (PR3) and anti-PR3 Abs. This study investigated if neutrophil-derived PR3 could induce activation of the kinin pathway. PR3 incubated with HK, or a synthetic peptide derived from HK, induced breakdown and release of a novel tridecapeptide termed PR3-kinin, NH2-MKRPPGFSPFRSS-COOH, consisting of bradykinin with two additional amino acids on each terminus. The reaction was specific and inhibited by anti-PR3 and α1-antitrypsin. Recombinant wild-type PR3 incubated with HK induced HK breakdown, whereas mutated PR3, lacking enzymatic activity, did not. PR3-kinin bound to and activated human kinin B1 receptors, but did not bind to B2 receptors, expressed by transfected HEK293 cells in vitro. In human plasma PR3-kinin was further processed to the B2 receptor agonist bradykinin. PR3-kinin exerted a hypotensive effect in vivo through both B1 and B2 receptors as demonstrated using wild-type and B1 overexpressing rats as well as wild-type and B2 receptor knockout mice. Neutrophil extracts from vasculitis patients and healthy controls contained comparable amounts of PR3 and induced HK proteolysis, an effect that was abolished when PR3 was immunoadsorbed. Neutrophil-derived PR3 can proteolyze HK and liberate PR3-kinin, thereby initiating kallikrein-independent activation of the kinin pathway.
Serotonin, a highly pro-inflammatory molecule released by activated platelets, is formed by tryptophan. Tryptophan is also needed in the production of kynurenine, a process mediated by the type I interferon (IFN)-regulated rate-limiting enzyme indoleamine 2,3-dioxygenase (IDO). The aim of this study was to investigate levels of serotonin in patients with the autoimmune disease systemic lupus erythematosus (SLE), association to clinical phenotype and possible involvement of IDO in regulation of serotonin synthesis. Serotonin levels were measured in serum and plasma from patients with SLE (n=148) and healthy volunteers (n=79) by liquid chromatography and ELISA, as well as intracellularly in platelets by flow cytometry. We found that SLE patients had decreased serotonin levels in serum (p=0.01) and platelets (p<0.0001) as compared to healthy individuals. SLE patients with ongoing type I IFN activity, as determined by an in-house reporter assay, had decreased serum levels of serotonin (p=0.0008) as well as increased IDO activity (p<0.0001), as determined by the kynurenine/tryptophan ratio measured by liquid chromatography. Furthermore, SLE sera induced IDO expression in WISH cells in a type I IFN-dependent manner (p=0.008). Also platelet activation contributed to reduce overall availability of serotonin levels in platelets and serum (p<0.05). Decreased serum serotonin levels were associated with severe SLE with presence of anti-dsDNA antibodies and nephritis. In all, reduced serum serotonin levels in SLE patients were related to severe disease phenotype, including nephritis, suggesting involvement of important immunopathological processes. Further, our data suggest that type I IFNs, present in SLE sera, are able to up-regulate IDO expression, which may lead to decreased serum serotonin levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.